Artificial intelligence-derived left ventricular strain in echocardiography in patients treated with chemotherapy

心室 射血分数 内科学 心脏病学 医学 化疗 左心室肥大 心力衰竭 血压
作者
Asuka Kuwahara,Yoichi Iwasaki,Masatake Kobayashi,Ryu Takagi,Satoshi Yamada,Takashi Kubo,Kazuhiro Satomi,Nobuhiro Tanaka
出处
期刊:International Journal of Cardiovascular Imaging [Springer Nature]
标识
DOI:10.1007/s10554-024-03178-9
摘要

Abstract Global longitudinal strain (GLS) is an echocardiographic measure to detect chemotherapy-related cardiovascular dysfunction. However, its limited availability and the needed expertise may restrict its generalization. Artificial intelligence (AI)-based GLS might overcome these challenges. Our aims are to explore the agreements between AI-based GLS and conventional GLS, and to assess whether the agreements were influenced by expertise levels, cardiac remodeling and cardiovascular diseases/risks. Echocardiographic images in the apical four-chamber view of left ventricle were retrospectively analyzed based on AI-based GLS in patients treated with chemotherapy, and correlation between AI-based GLS (Caas Qardia, Pie Medical Imaging) and conventional GLS (Vivid E9/VividE95, GE Healthcare) were assessed. The agreement between unexperienced physicians (“GLS beginner”) and experienced echocardiographer were also assessed. Among 94 patients (mean age 69 ± 12 years, 73% female), mean left ventricular ejection fraction was 64 ± 6%, 14% of patients had left ventricular hypertrophy, and 21% had left atrial enlargement. Mean GLS was − 15.9 ± 3.4% and − 19.0 ± 3.7% for the AI and conventional method, respectively. There was a moderate correlation between these methods (rho = 0.74; p < 0.01), and bias was − 3.1% (95% limits of agreement: -8.1 to 2.0). The reproducibility between GLS beginner and an experienced echocardiographer was numerically better in the AI method than the conventional method (inter-observer agreement = 0.82 vs. 0.68). The agreements were consistent across abnormal cardiac structure and function categories (p-for-interaction > 0.10). In patients treated with chemotherapy. AI-based GLS was moderately correlated with conventional GLS and provided a numerically better reproducibility compared with conventional GLS, regardless of different levels of expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在我梦里绕完成签到,获得积分10
刚刚
gudujian870928完成签到,获得积分10
刚刚
我思故我在完成签到,获得积分10
1秒前
斯文败类应助G_G采纳,获得10
1秒前
hanqing完成签到,获得积分20
1秒前
欣慰的天奇完成签到,获得积分20
2秒前
帅气羊发布了新的文献求助10
2秒前
超帅从彤完成签到,获得积分10
3秒前
哭泣的平蝶完成签到,获得积分10
3秒前
正己化人应助569402865采纳,获得10
3秒前
小冠军完成签到,获得积分0
3秒前
xinanan完成签到,获得积分10
4秒前
小刀yeye完成签到,获得积分10
4秒前
4秒前
权志龙完成签到,获得积分10
4秒前
pjwl完成签到 ,获得积分10
5秒前
早起大王完成签到,获得积分10
5秒前
5秒前
早起完成签到,获得积分10
5秒前
大好人完成签到 ,获得积分10
5秒前
5秒前
排骨炖豆角完成签到 ,获得积分10
6秒前
梨有理想完成签到 ,获得积分10
6秒前
亚秋完成签到,获得积分10
7秒前
涵涵涵hh完成签到 ,获得积分10
7秒前
神秘玩家完成签到 ,获得积分10
7秒前
瘦瘦的草丛完成签到,获得积分10
7秒前
11贾完成签到,获得积分10
8秒前
8秒前
AllRightReserved完成签到 ,获得积分10
8秒前
朴素海亦发布了新的文献求助10
9秒前
咖可乐完成签到,获得积分10
9秒前
Tonsil01发布了新的文献求助10
10秒前
高大的千秋完成签到,获得积分10
11秒前
wangcw完成签到 ,获得积分10
11秒前
ash完成签到,获得积分10
12秒前
乔滴滴完成签到 ,获得积分10
13秒前
苏信怜完成签到,获得积分10
13秒前
...完成签到,获得积分10
13秒前
nn发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349