材料科学
金属锂
锂(药物)
对偶(语法数字)
双重功能
金属
硝酸锂
硝酸盐
锂离子电池的纳米结构
化学工程
无机化学
电池(电)
纳米技术
冶金
离子
电化学
热力学
有机化学
电极
离子键合
物理化学
艺术
工程制图
内分泌学
化学
文学类
工程类
功率(物理)
轮廓
医学
物理
作者
Austin G. Paul‐Orecchio,Lucas Stockton,Neel Barichello,Andrew Petersen,Andrei Dolocan,Yixian Wang,David Mitlin,C. Buddie Mullins
标识
DOI:10.1021/acsami.4c06385
摘要
Lithium metal is regarded as the "holy grail" of lithium-ion battery anodes due to its exceptionally high theoretical capacity (3800 mAh g-1) and lowest possible electrochemical potential (-3.04 V vs Li/Li+); however, lithium suffers from the dendritic formation that leads to parasitic reactions and cell failure. In this work, we stabilize fast-charging lithium metal plating/stripping with dual-function alloying M-nitrate additives (M: Ag, Bi, Ga, In, and Zn). First, lithium metal reduces M, forming lithiophilic alloys for dense Li nucleation. Additionally, nitrates form ionically conductive and mechanically stable Li3N and LiNxOy, enhancing Li-ion diffusion through the passivation layer. Notably, Zn-protected cells demonstrate electrochemically stable Li||Li cycling for 750+ cycles (2.0 mA cm-2) and 140 cycles (10.0 mA cm-2). Moreover, Zn-protected Li||Lithium Iron Phosphate full-cells achieve 134 mAh g-1 (89.2% capacity retention) after 400 cycles (C/2). This work investigates a promising solution to stabilize lithium metal plating/stripping for fast-charging lithium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI