多极展开
哑铃
太赫兹辐射
偶极子
激发态
激发
纳米光子学
物理
共振(粒子物理)
电磁场
光学
原子物理学
量子力学
医学
物理疗法
作者
Jixin Feng,Xianghui Wang,Weinan Shi,Liang Ma,Yunyun Ji,Fei Fan,Shengjiang Chang
出处
期刊:Nanophotonics
[De Gruyter]
日期:2024-07-31
卷期号:13 (21): 4007-4017
标识
DOI:10.1515/nanoph-2024-0254
摘要
Abstract Multi-resonant metasurfaces are of great significance in the applications of multi-band nanophotonics. Here, we propose a novel metasurface design scheme for simultaneously supporting quasi-bound states in continuum (QBIC) and other resonant modes, in which QBIC resonance is generated by mirror or rotational symmetry breaking in oligomers while other resonant modes can be simultaneously excited by rationally designing the shapes of meta-atoms within oligomers. As an example, the simultaneous excitation of QBIC and anapole modes are demonstrated in a dimer metasurface composed of asymmetric dumbbell-shaped apertures. Based on the far-field multipole decomposition and near-field electromagnetic field distributions, the origin mechanisms of QBIC and anapole mode are elucidated. The symmetry breaking of dumbbell-shaped dimer results in QBIC. Within a certain asymmetric variation range, the contributions of toroidal dipole moment and electric dipole moment with approximately equal magnitudes remain dominant, which allows the anapole mode to always present. The effectiveness of the proposed design scheme is further confirmed by the experimental results identical with the evolutions of numerical simulation. In terahertz biosensing experiments, the anapole mode exhibits a higher sensitivity of 271.3 GHz (nmol/μl) −1 , whereas the QBIC can achieve a lower detection limit of 0.015 nmol/μl and expands the detection range by almost an order of magnitude. Our findings are beneficial to designing multi-resonant metasurfaces with different resonance modes and promote the corresponding applications in the fields of biosensing, lasers, filtering, and nonlinearity.
科研通智能强力驱动
Strongly Powered by AbleSci AI