清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Numerical research on the aerodynamic performance of inlet volute duct for a heavy-duty gas turbine

蜗壳 燃气轮机 入口 空气动力学 涡轮机 导管(解剖学) 重型的 环境科学 海洋工程 工程类 航空航天工程 机械工程 汽车工程 医学 病理
作者
L. Zeng,Qi Chen,Hui Chen,Jiayi Zhao,Qiliang Shi,Han Zhang,Xinyuan Li
标识
DOI:10.1177/09576509241295296
摘要

Heavy-duty gas turbines represent a highly efficient method for converting heat into power within power generation systems. As the technology behind these turbines advances, their operational efficiency and stability have become paramount. The intake volute, a crucial component of the turbine’s intake system, significantly affects the airflow dynamics within the inlet channel of the pressurized turbine. This study employs numerical simulations to analyze the airflow field within the L inlet volute duct of a heavy-duty gas turbine. Initial findings indicate a lack of uniformity in the airflow field as it transitions through the volute’s turning section into the contraction area. Modifications to the arc structure at the airflow corners have demonstrated potential for enhancing flow uniformity in the constriction section while reducing total pressure distortion at the volute duct’s outlet. Further analysis of linear structural parameters of the contraction section, including the taper angle (α) and the tilt angle (β) at the rear of the inlet chamber, reveals that a lower Bezier curve parameter I significantly diminishes exit airflow distortion. Conversely, Bezier curve parameter II appears to exert minimal influence on airflow distortion. Optimal taper and tilt angles, ranging from 25° to 30° and 9° respectively, minimize mean velocity inhomogeneity and total pressure distortion at the outlet. Compared to the original structure, these adjustments reduce mean velocity inhomogeneity by 55.19% and total pressure distortion by 53.93% at the duct’s outlet, thus achieving a more uniform flow field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
松松完成签到 ,获得积分10
15秒前
大个应助科研通管家采纳,获得10
17秒前
科研通AI6应助开朗雅霜采纳,获得10
1分钟前
kiterunner发布了新的文献求助10
1分钟前
2分钟前
Pattis发布了新的文献求助10
2分钟前
qcy72完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
狼来了aas完成签到,获得积分10
3分钟前
long完成签到 ,获得积分10
4分钟前
淞淞于我完成签到 ,获得积分10
4分钟前
明朗完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
不安溪灵完成签到,获得积分10
5分钟前
jj发布了新的文献求助30
5分钟前
5分钟前
开放凝珍完成签到 ,获得积分10
5分钟前
6分钟前
随心所欲完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
子平完成签到 ,获得积分0
8分钟前
盖景浩应助科研通管家采纳,获得150
8分钟前
Yoanna应助紫熊采纳,获得20
8分钟前
crystaler完成签到 ,获得积分10
8分钟前
bono完成签到 ,获得积分10
8分钟前
达克赛德完成签到 ,获得积分10
8分钟前
9分钟前
Bamboooo发布了新的文献求助10
9分钟前
whqpeter完成签到,获得积分10
9分钟前
NexusExplorer应助whqpeter采纳,获得10
9分钟前
天天快乐应助Bamboooo采纳,获得10
9分钟前
9分钟前
9分钟前
whqpeter发布了新的文献求助10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
开朗雅霜发布了新的文献求助10
9分钟前
卓初露完成签到 ,获得积分10
10分钟前
开朗雅霜完成签到,获得积分10
10分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5138589
求助须知:如何正确求助?哪些是违规求助? 4337894
关于积分的说明 13512016
捐赠科研通 4176837
什么是DOI,文献DOI怎么找? 2290452
邀请新用户注册赠送积分活动 1290914
关于科研通互助平台的介绍 1232920