An Improved Vehicle Path-Tracking Model Based on Adaptive Nonlinear Model Predictive Control via Online Big Bang—Big Crunch Algorithm and Artificial Neural Network

非线性系统 人工神经网络 模型预测控制 路径(计算) 跟踪(教育) 计算机科学 控制理论(社会学) 算法 非线性模型 控制(管理) 人工智能 物理 医学 心理学 教育学 量子力学 程序设计语言 物理疗法
作者
Volkan Bekir Yangın,Yaprak Yalçın,Özgen Akalın
出处
期刊:SAE International journal of vehicle dynamics, stability, and NVH 卷期号:8 (4)
标识
DOI:10.4271/10-08-04-0032
摘要

<div>In this article, a novel tuning approach is proposed to obtain the best weights of the discrete-time adaptive nonlinear model predictive controller (AN-MPC) with consideration of improved path-following performance of a vehicle at different speeds in the NATO double lane change (DLC) maneuvers. The proposed approach combines artificial neural network (ANN) and Big Bang–Big Crunch (BB–BC) algorithm in two stages. Initially, ANN is used to tune all AN-MPC weights online. Vehicle speed, lateral position, and yaw angle outputs from many simulations, performed with different AN-MPC weights, are used to train the ANN structure. In addition, set-point signals are used as inputs to the ANN. Later, the BB–BC algorithm is implemented to enhance the path-tracking performance. ANN outputs are selected as the initial center of mass in the first iteration of the BB–BC algorithm. To prevent control signal fluctuations, control and prediction horizons are kept constant during the simulations. The results showed that all AN-MPC weights are successfully tuned online and updated during the maneuvers, and the path-following performance of the ego vehicle is improved at different NATO DLC speeds using the proposed ANN + BB–BC, compared to the method where ANN is used only.</div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Hollen完成签到 ,获得积分10
2秒前
慕青应助学术蠕虫采纳,获得10
3秒前
3秒前
叶子发布了新的文献求助10
4秒前
orangel完成签到,获得积分10
5秒前
半壶月色半边天完成签到 ,获得积分10
6秒前
tmpstlml发布了新的文献求助10
6秒前
7秒前
7秒前
不安饼干完成签到 ,获得积分10
9秒前
活泼的飞鸟完成签到,获得积分10
9秒前
10秒前
xuyun发布了新的文献求助10
10秒前
10秒前
zzcres完成签到,获得积分10
12秒前
eeeee完成签到 ,获得积分10
12秒前
乐观德地完成签到,获得积分10
13秒前
大个应助yf_zhu采纳,获得10
13秒前
llk发布了新的文献求助10
14秒前
一只大肥猫完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
16秒前
16秒前
科研通AI5应助GGG采纳,获得10
17秒前
17秒前
19秒前
Ann发布了新的文献求助20
19秒前
19秒前
buno应助duxinyue采纳,获得10
19秒前
xlj发布了新的文献求助10
20秒前
20秒前
可爱的函函应助zhen采纳,获得10
21秒前
研友_VZG7GZ应助dingdong采纳,获得10
22秒前
22秒前
李成恩完成签到 ,获得积分10
23秒前
心碎的黄焖鸡完成签到 ,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808