嚼
非线性系统
人工神经网络
模型预测控制
路径(计算)
跟踪(教育)
计算机科学
控制理论(社会学)
算法
非线性模型
控制(管理)
人工智能
物理
医学
程序设计语言
量子力学
教育学
心理学
物理疗法
作者
Volkan Bekir Yangın,Yaprak Yalçın,Özgen Akalın
出处
期刊:SAE International journal of vehicle dynamics, stability, and NVH
日期:2024-10-25
卷期号:8 (4)
标识
DOI:10.4271/10-08-04-0032
摘要
<div>In this article, a novel tuning approach is proposed to obtain the best weights of the discrete-time adaptive nonlinear model predictive controller (AN-MPC) with consideration of improved path-following performance of a vehicle at different speeds in the NATO double lane change (DLC) maneuvers. The proposed approach combines artificial neural network (ANN) and Big Bang–Big Crunch (BB–BC) algorithm in two stages. Initially, ANN is used to tune all AN-MPC weights online. Vehicle speed, lateral position, and yaw angle outputs from many simulations, performed with different AN-MPC weights, are used to train the ANN structure. In addition, set-point signals are used as inputs to the ANN. Later, the BB–BC algorithm is implemented to enhance the path-tracking performance. ANN outputs are selected as the initial center of mass in the first iteration of the BB–BC algorithm. To prevent control signal fluctuations, control and prediction horizons are kept constant during the simulations. The results showed that all AN-MPC weights are successfully tuned online and updated during the maneuvers, and the path-following performance of the ego vehicle is improved at different NATO DLC speeds using the proposed ANN + BB–BC, compared to the method where ANN is used only.</div>
科研通智能强力驱动
Strongly Powered by AbleSci AI