自愈水凝胶
马来酰亚胺
材料科学
光致聚合物
乙二醇
共聚物
单体
高分子化学
网络拓扑
编队网络
聚合物
拓扑(电路)
化学工程
计算机科学
复合材料
操作系统
组合数学
工程类
万维网
数学
作者
Bruce E. Kirkpatrick,Grace K. Hach,Benjamin R. Nelson,Nathaniel P. Skillin,Joshua S. Lee,Lea Pearl Hibbard,Abhishek P. Dhand,Henry S. Grotheer,Connor E. Miksch,Violeta Salazar,Tayler S. Hebner,Sean P. Keyser,Joshua T. Kamps,Jasmine Sinha,Laura J. Macdougall,Benjamin D. Fairbanks,Jason A. Burdick,Timothy J. White,Christopher N. Bowman,Kristi S. Anseth
标识
DOI:10.1002/adma.202409603
摘要
Abstract Hydrogels are often synthesized through photoinitiated step‐, chain‐, and mixed‐mode polymerizations, generating diverse network topologies and resultant material properties that depend on the underlying network connectivity. While many photocrosslinking reactions are available, few afford controllable connectivity of the hydrogel network. Herein, a versatile photochemical strategy is introduced for tuning the structure of poly(ethylene glycol) (PEG) hydrogels using macromolecular monomers functionalized with maleimide and styrene moieties. Hydrogels are prepared along a gradient of topologies by varying the ratio of step‐growth (maleimide dimerization) to chain‐growth (maleimide‐styrene alternating copolymerization) network‐forming reactions. The initial PEG content and final network physical properties (e.g., modulus, swelling, diffusivity) are tailored in an independent manner, highlighting configurable gel mechanics and reactivity. These photochemical reactions allow high‐fidelity photopatterning and 3D printing and are compatible with 2D and 3D cell culture. Ultimately, this photopolymer chemistry allows facile control over network connectivity to achieve adjustable material properties for broad applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI