Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring

电极 材料科学 纳米技术 自愈水凝胶 人造皮肤 生物医学工程 化学 高分子化学 工程类 物理化学
作者
Chencong Liu,Yuanyuan Wang,Shitao Shi,Yubo Zheng,Zewei Ye,Jiaqi Liao,Qingfeng Sun,Baokang Dang,Xiaoping Shen
出处
期刊:ACS Nano [American Chemical Society]
被引量:20
标识
DOI:10.1021/acsnano.4c07677
摘要

Significant advancements in hydrogel-based epidermal electrodes have been made in recent years. However, inherent limitations, such as adaptability, adhesion, and conductivity, have presented challenges, thereby limiting the sensitivity, signal-to-noise ratio (SNR), and stability of the physiological-electrode interface. In this study, we propose the concept of myelin sheath-inspired hydrogel epidermal electronics by incorporating numerous interpenetrating core-sheath-structured conductive nanofibers within a physically cross-linked polyelectrolyte network. Poly(3,4-ethylenedioxythiophene)-coated sulfonated cellulose nanofibers (PEDOT:SCNFs) are synthesized through a simple solvent-catalyzed sulfonation process, followed by oxidative self-polymerization and ionic liquid (IL) shielding steps, achieving a low electrochemical impedance of 42 Ω. The physical associations within the composite hydrogel network include complexation, electrostatic forces, hydrogen bonding, π-π stacking, hydrophobic interaction, and weak entanglements. These properties confer the hydrogel with high stretchability (770%), superconformability, self-adhesion (28 kPa on pigskin), and self-healing capabilities. By simulating the saltatory propagation effect of the nodes of Ranvier in the nervous system, the biomimetic hydrogel establishes high-fidelity epidermal electronic interfaces, offering benefits such as low interfacial contact impedance, significantly increased SNR (30 dB), as well as large-scale sensor array integration. The advanced biomimetic hydrogel holds tremendous potential for applications in electronic skin (e-skin), human-machine interfaces (HMIs), and healthcare assessment devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺科研完成签到,获得积分20
刚刚
桐桐应助李佳轩采纳,获得10
2秒前
cccccgggmmm关注了科研通微信公众号
3秒前
希文完成签到,获得积分10
4秒前
5秒前
David完成签到,获得积分10
5秒前
洁净的嘉熙完成签到,获得积分10
6秒前
6秒前
Ava应助lxy采纳,获得30
7秒前
www完成签到,获得积分10
9秒前
叶子完成签到,获得积分10
9秒前
10秒前
爱吃肉完成签到,获得积分10
10秒前
daydream关注了科研通微信公众号
10秒前
任栎名完成签到,获得积分20
12秒前
zeng完成签到,获得积分10
12秒前
12秒前
hewd3发布了新的文献求助10
15秒前
Jarvis完成签到,获得积分10
16秒前
orixero应助愤怒的山兰采纳,获得10
16秒前
16秒前
16秒前
意面米助发布了新的文献求助10
17秒前
18秒前
19秒前
xixi发布了新的文献求助10
21秒前
23秒前
23秒前
彭于晏应助hewd3采纳,获得10
24秒前
popvich应助Azlne采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
25秒前
李健应助科研通管家采纳,获得10
25秒前
干饭虫应助科研通管家采纳,获得10
25秒前
Rita应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
干饭虫应助科研通管家采纳,获得10
25秒前
干饭虫应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979699
求助须知:如何正确求助?哪些是违规求助? 4232313
关于积分的说明 13183302
捐赠科研通 4023465
什么是DOI,文献DOI怎么找? 2201316
邀请新用户注册赠送积分活动 1213777
关于科研通互助平台的介绍 1130020