Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring

电极 材料科学 纳米技术 自愈水凝胶 人造皮肤 生物医学工程 化学 高分子化学 工程类 物理化学
作者
Chencong Liu,Yuanyuan Wang,Shitao Shi,Yubo Zheng,Zewei Ye,Jiaqi Liao,Qingfeng Sun,Baokang Dang,Xiaoping Shen
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (40): 27420-27432 被引量:27
标识
DOI:10.1021/acsnano.4c07677
摘要

Significant advancements in hydrogel-based epidermal electrodes have been made in recent years. However, inherent limitations, such as adaptability, adhesion, and conductivity, have presented challenges, thereby limiting the sensitivity, signal-to-noise ratio (SNR), and stability of the physiological-electrode interface. In this study, we propose the concept of myelin sheath-inspired hydrogel epidermal electronics by incorporating numerous interpenetrating core-sheath-structured conductive nanofibers within a physically cross-linked polyelectrolyte network. Poly(3,4-ethylenedioxythiophene)-coated sulfonated cellulose nanofibers (PEDOT:SCNFs) are synthesized through a simple solvent-catalyzed sulfonation process, followed by oxidative self-polymerization and ionic liquid (IL) shielding steps, achieving a low electrochemical impedance of 42 Ω. The physical associations within the composite hydrogel network include complexation, electrostatic forces, hydrogen bonding, π-π stacking, hydrophobic interaction, and weak entanglements. These properties confer the hydrogel with high stretchability (770%), superconformability, self-adhesion (28 kPa on pigskin), and self-healing capabilities. By simulating the saltatory propagation effect of the nodes of Ranvier in the nervous system, the biomimetic hydrogel establishes high-fidelity epidermal electronic interfaces, offering benefits such as low interfacial contact impedance, significantly increased SNR (30 dB), as well as large-scale sensor array integration. The advanced biomimetic hydrogel holds tremendous potential for applications in electronic skin (e-skin), human-machine interfaces (HMIs), and healthcare assessment devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助袋袋采纳,获得10
刚刚
licht完成签到 ,获得积分10
1秒前
JamesPei应助Li采纳,获得10
1秒前
韦远侵完成签到,获得积分10
1秒前
小二郎完成签到 ,获得积分10
1秒前
doou完成签到,获得积分10
1秒前
笨笨鲜花完成签到,获得积分10
1秒前
xiaosi完成签到 ,获得积分10
1秒前
承乐完成签到,获得积分10
1秒前
离雨季完成签到,获得积分10
2秒前
LL完成签到,获得积分10
2秒前
北执完成签到,获得积分10
2秒前
2秒前
坚定思天完成签到,获得积分10
3秒前
安的沛白完成签到,获得积分10
3秒前
昀松完成签到,获得积分10
4秒前
4秒前
欢呼山雁完成签到,获得积分10
5秒前
上官若男应助命名真麻烦采纳,获得20
5秒前
嵇丹雪完成签到,获得积分10
6秒前
Kingzd完成签到,获得积分10
6秒前
自由的白羊应助iris采纳,获得10
7秒前
端庄的小翠完成签到,获得积分10
7秒前
NICKPLZ完成签到,获得积分10
7秒前
7秒前
帅气yumin发布了新的文献求助10
8秒前
一只鱼完成签到,获得积分10
8秒前
phy完成签到,获得积分10
8秒前
哈哈完成签到 ,获得积分10
8秒前
hhh完成签到,获得积分10
8秒前
Yrawn完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
田様应助陈曦采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
冷泠凛应助shjdjhs采纳,获得10
9秒前
积极从蕾应助科研通管家采纳,获得10
9秒前
积极从蕾应助科研通管家采纳,获得10
9秒前
积极从蕾应助科研通管家采纳,获得10
9秒前
哆唻应助科研通管家采纳,获得30
10秒前
积极从蕾应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612217
求助须知:如何正确求助?哪些是违规求助? 4696396
关于积分的说明 14891733
捐赠科研通 4732664
什么是DOI,文献DOI怎么找? 2546274
邀请新用户注册赠送积分活动 1510505
关于科研通互助平台的介绍 1473401