Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring

电极 材料科学 纳米技术 自愈水凝胶 人造皮肤 生物医学工程 化学 高分子化学 工程类 物理化学
作者
Chencong Liu,Yuanyuan Wang,Shitao Shi,Yubo Zheng,Zewei Ye,Jiaqi Liao,Qingfeng Sun,Baokang Dang,Xiaoping Shen
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (40): 27420-27432 被引量:27
标识
DOI:10.1021/acsnano.4c07677
摘要

Significant advancements in hydrogel-based epidermal electrodes have been made in recent years. However, inherent limitations, such as adaptability, adhesion, and conductivity, have presented challenges, thereby limiting the sensitivity, signal-to-noise ratio (SNR), and stability of the physiological-electrode interface. In this study, we propose the concept of myelin sheath-inspired hydrogel epidermal electronics by incorporating numerous interpenetrating core-sheath-structured conductive nanofibers within a physically cross-linked polyelectrolyte network. Poly(3,4-ethylenedioxythiophene)-coated sulfonated cellulose nanofibers (PEDOT:SCNFs) are synthesized through a simple solvent-catalyzed sulfonation process, followed by oxidative self-polymerization and ionic liquid (IL) shielding steps, achieving a low electrochemical impedance of 42 Ω. The physical associations within the composite hydrogel network include complexation, electrostatic forces, hydrogen bonding, π-π stacking, hydrophobic interaction, and weak entanglements. These properties confer the hydrogel with high stretchability (770%), superconformability, self-adhesion (28 kPa on pigskin), and self-healing capabilities. By simulating the saltatory propagation effect of the nodes of Ranvier in the nervous system, the biomimetic hydrogel establishes high-fidelity epidermal electronic interfaces, offering benefits such as low interfacial contact impedance, significantly increased SNR (30 dB), as well as large-scale sensor array integration. The advanced biomimetic hydrogel holds tremendous potential for applications in electronic skin (e-skin), human-machine interfaces (HMIs), and healthcare assessment devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss完成签到 ,获得积分10
1秒前
丘比特应助流星噬月采纳,获得30
3秒前
苗儿发布了新的文献求助10
3秒前
4秒前
千凡发布了新的文献求助10
5秒前
6秒前
7秒前
体贴觅云完成签到,获得积分10
7秒前
无花果应助tim采纳,获得10
7秒前
无言完成签到 ,获得积分10
9秒前
9秒前
10秒前
科研通AI6应助yangjing采纳,获得10
11秒前
11秒前
Xianhe完成签到,获得积分10
13秒前
时迎天发布了新的文献求助10
14秒前
马大帅发布了新的文献求助10
14秒前
青柠发布了新的文献求助10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
bkagyin应助luojimao采纳,获得10
20秒前
13052782801完成签到,获得积分20
20秒前
汪勇发布了新的文献求助10
20秒前
21秒前
希望天下0贩的0应助青柠采纳,获得10
21秒前
菠萝吃多发布了新的文献求助10
21秒前
科研通AI6应助小云采纳,获得10
21秒前
科研通AI2S应助jojo144采纳,获得10
23秒前
24秒前
zhangheng完成签到,获得积分20
24秒前
2023050945发布了新的文献求助10
27秒前
29秒前
psj完成签到,获得积分10
29秒前
晚风完成签到,获得积分10
29秒前
权寻梅完成签到,获得积分10
29秒前
BINGBING1230发布了新的文献求助10
30秒前
husy完成签到,获得积分10
30秒前
Dasein完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618411
求助须知:如何正确求助?哪些是违规求助? 4703270
关于积分的说明 14921904
捐赠科研通 4757391
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299