GalaxyDock-DL: Protein–Ligand Docking by Global Optimization and Neural Network Energy

过度拟合 对接(动物) 计算机科学 蛋白质-配体对接 人工神经网络 蛋白质配体 深度学习 配体(生物化学) 人工智能 机器学习 化学 生物系统 分子动力学 生物 计算化学 虚拟筛选 医学 生物化学 护理部 受体
作者
Changsoo Lee,Jonghun Won,Seongok Ryu,Jinsol Yang,Nuri Jung,Hahnbeom Park,Chaok Seok
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.jctc.4c00385
摘要

With the recent introduction of deep learning techniques into the prediction of biomolecular structures, structure prediction performance has significantly improved, and the potential for biomedical applications has increased considerably. The prediction of protein–ligand complex structures, applicable to the atomistic understanding of biomolecular functions and the effective design of drug molecules, has also improved with the introduction of deep learning. In this paper, it is demonstrated that docking performance can be greatly enhanced by training an energy function that encapsulates physical effects using deep learning within the framework of the traditional protein–ligand docking method. The advantage of this method, called GalaxyDock-DL, lies in its minimal overfitting to the training data compared to several existing deep learning-based protein–ligand docking methods. Unlike some recent deep learning methods, it does not use information about known binding pocket center positions. Instead, the results of this docking method show a systematic dependence on the physical properties of the target protein–ligand complexes such as atomic thermal fluctuations and binding affinity. GalaxyDock-DL utilizes the global optimization technique of the conventional protein–ligand docking method, GalaxyDock, and a neural network energy function trained to stabilize the native state compared to non-native states, just as physical free energy does. This physical principle-based approach suggests directions not only for future structure prediction involving structurally flexible biomolecular complexes but also for predicting binding affinity, thereby providing guidance for the effective design of biofunctional ligands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
QiLe发布了新的文献求助20
1秒前
2秒前
蛋蛋完成签到 ,获得积分10
3秒前
111关注了科研通微信公众号
3秒前
三一完成签到,获得积分10
3秒前
4秒前
每㐬山风发布了新的文献求助10
4秒前
4114完成签到,获得积分10
5秒前
5秒前
嘿嘿嘿发布了新的文献求助10
9秒前
自觉雁玉发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
innocent完成签到 ,获得积分10
12秒前
小白鞋完成签到 ,获得积分10
12秒前
小二郎应助小涛哥采纳,获得10
13秒前
华仔应助饱满的问丝采纳,获得10
14秒前
yegechuanqi发布了新的文献求助10
14秒前
xiaoxuey发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
nowss发布了新的文献求助10
20秒前
牛战士完成签到,获得积分10
20秒前
小蘑菇应助yegechuanqi采纳,获得10
22秒前
小透明完成签到,获得积分0
23秒前
热心市民完成签到 ,获得积分10
24秒前
徐若楠发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
徐若楠完成签到,获得积分10
29秒前
彭于晏应助Keira_Chang采纳,获得10
29秒前
kellogg关注了科研通微信公众号
30秒前
CBY完成签到,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425164
求助须知:如何正确求助?哪些是违规求助? 4539269
关于积分的说明 14166518
捐赠科研通 4456411
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435224
关于科研通互助平台的介绍 1412564