GalaxyDock-DL: Protein–Ligand Docking by Global Optimization and Neural Network Energy

过度拟合 对接(动物) 计算机科学 蛋白质-配体对接 人工神经网络 蛋白质配体 深度学习 配体(生物化学) 人工智能 机器学习 化学 生物系统 分子动力学 生物 计算化学 虚拟筛选 医学 生物化学 护理部 受体
作者
Changsoo Lee,Jonghun Won,Seongok Ryu,Jinsol Yang,Nuri Jung,Hahnbeom Park,Chaok Seok
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.jctc.4c00385
摘要

With the recent introduction of deep learning techniques into the prediction of biomolecular structures, structure prediction performance has significantly improved, and the potential for biomedical applications has increased considerably. The prediction of protein–ligand complex structures, applicable to the atomistic understanding of biomolecular functions and the effective design of drug molecules, has also improved with the introduction of deep learning. In this paper, it is demonstrated that docking performance can be greatly enhanced by training an energy function that encapsulates physical effects using deep learning within the framework of the traditional protein–ligand docking method. The advantage of this method, called GalaxyDock-DL, lies in its minimal overfitting to the training data compared to several existing deep learning-based protein–ligand docking methods. Unlike some recent deep learning methods, it does not use information about known binding pocket center positions. Instead, the results of this docking method show a systematic dependence on the physical properties of the target protein–ligand complexes such as atomic thermal fluctuations and binding affinity. GalaxyDock-DL utilizes the global optimization technique of the conventional protein–ligand docking method, GalaxyDock, and a neural network energy function trained to stabilize the native state compared to non-native states, just as physical free energy does. This physical principle-based approach suggests directions not only for future structure prediction involving structurally flexible biomolecular complexes but also for predicting binding affinity, thereby providing guidance for the effective design of biofunctional ligands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情的青烟完成签到,获得积分10
1秒前
pp完成签到,获得积分10
1秒前
不怕考试的赵无敌完成签到 ,获得积分10
1秒前
小蓝完成签到,获得积分10
4秒前
ANT完成签到 ,获得积分10
4秒前
星星星完成签到,获得积分10
4秒前
田様应助金少爷采纳,获得10
5秒前
橘子林完成签到,获得积分10
7秒前
杭紫雪发布了新的文献求助10
7秒前
舒心的青亦完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
白瑾完成签到,获得积分10
13秒前
解语花031发布了新的文献求助10
14秒前
科目三应助子木采纳,获得10
17秒前
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
孤星完成签到,获得积分10
18秒前
18秒前
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
Diliam应助多情的青烟采纳,获得30
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
Joy完成签到,获得积分10
19秒前
无奈的又晴完成签到,获得积分10
20秒前
nini完成签到,获得积分10
21秒前
有魅力草丛完成签到 ,获得积分20
21秒前
杭紫雪完成签到,获得积分10
22秒前
lanbing802完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900