Association of N‐terminal pro‐B natriuretic peptide with all‐cause mortality and cardiovascular mortality in obese and non‐obese populations and the development of a machine learning prediction model: National Health and Nutrition Examination Survey (NHANES) 1999–2004

医学 危险系数 体质指数 全国健康与营养检查调查 内科学 比例危险模型 逻辑回归 人口 置信区间 肥胖 环境卫生
作者
Han Zhou,Chen Yang,J.N. Li,Lin Sun
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
标识
DOI:10.1111/dom.15927
摘要

Abstract Aims To explore the potential of N‐terminal pro‐B natriuretic peptide (NTproBNP) in identifying adverse outcomes, particularly cardiovascular adverse outcomes, in a population with obesity, and to establish a risk prediction model. Methods The data for this study were obtained from the National Health and Nutrition Examination Survey (NHANES) for 6772 participants without heart failure, for the years 1999 to 2004. Multivariable Cox regression models, cubic spline restricted models and Kaplan–Meier curves were used to evaluate the relationship between NTproBNP and both all‐cause mortality and cardiovascular mortality. Predictive models were established using seven machine learning methods, and evaluation was conducted using precision, recall, F1 score, accuracy, and area under the curve (AUC) values. Results During the population follow‐up, out of 6772 participants, 1554 died, with 365 deaths attributed to cardiovascular disease. After adjusting for relevant covariates, NTproBNP levels ≥300 pg/mL were positively associated with both all‐cause mortality (hazard ratio [HR] 3.00, 95% confidence interval [CI] 2.48, 3.67) and cardiovascular mortality (HR 6.05, 95% CI 3.67, 9.97), and remained significant across different body mass index (BMI) strata. However, in participants without abdominal obesity, the correlation between NTproBNP and cardiovascular mortality was significantly reduced. Among the seven machine learning methods, logistic regression demonstrated better predictive performance for both all‐cause mortality (AUC 0.86925) and cardiovascular mortality (AUC 0.85115). However, establishing accurate cardiovascular mortality prediction models for non‐abdominal obese individuals proved challenging. Conclusion The study showed that NTproBNP can serve as a predictive factor for all‐cause mortality and cardiovascular mortality in individuals with different BMIs, including obese individuals. However, significant cardiovascular mortality correlation was observed only for NTproBNP levels ≥300 pg/mL, and only among participants with abdominal obesity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜗牛二世完成签到 ,获得积分10
刚刚
茶博士发布了新的文献求助10
刚刚
可心发布了新的文献求助30
1秒前
bdueggg发布了新的文献求助10
1秒前
dong发布了新的文献求助10
2秒前
枫枫829发布了新的文献求助10
2秒前
欧阳半仙完成签到,获得积分10
2秒前
循环不好的Cu完成签到,获得积分10
3秒前
Adeline完成签到,获得积分10
3秒前
卜天亦完成签到,获得积分10
5秒前
5秒前
qing2010发布了新的文献求助10
6秒前
7秒前
7秒前
隔壁巷子里的劉完成签到 ,获得积分10
8秒前
Lucas应助笑点低亿先采纳,获得10
9秒前
纪元龙完成签到,获得积分10
10秒前
星星发布了新的文献求助10
11秒前
Anserbe完成签到,获得积分20
15秒前
目土土完成签到 ,获得积分10
17秒前
zzzzzzz完成签到,获得积分10
17秒前
21秒前
风中的听白完成签到 ,获得积分20
22秒前
zzzzzzz发布了新的文献求助10
24秒前
rgaerva应助一叶扁舟采纳,获得10
24秒前
24秒前
鄂百川完成签到,获得积分10
25秒前
充电宝应助开朗的睫毛膏采纳,获得10
25秒前
25秒前
888完成签到 ,获得积分10
28秒前
烟花应助饱满的毛巾采纳,获得30
29秒前
碧蓝蓉发布了新的文献求助10
29秒前
小耳朵发布了新的文献求助10
29秒前
酷波er应助Sunly采纳,获得10
30秒前
31秒前
33秒前
Sunly完成签到,获得积分20
34秒前
35秒前
赵振辉发布了新的文献求助10
35秒前
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135044
求助须知:如何正确求助?哪些是违规求助? 2786005
关于积分的说明 7774726
捐赠科研通 2441825
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825