Construction and evaluation of a liver cancer risk prediction model based on machine learning

医学 Lasso(编程语言) 逻辑回归 接收机工作特性 队列 癌症 肝硬化 肝癌 肝细胞癌 机器学习 随机森林 肿瘤科 内科学 支持向量机 人工智能 计算机科学 万维网
作者
Yingying Wang,Wan-Xia Yang,Qiajun Du,Zhenhua Liu,Ming-Hua Lu,Chongge You
出处
期刊:World Journal of Gastrointestinal Oncology [Baishideng Publishing Group Co (World Journal of Gastrointestinal Oncology)]
卷期号:16 (9): 3839-3850
标识
DOI:10.4251/wjgo.v16.i9.3839
摘要

BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide, and its early detection and treatment are crucial for enhancing patient survival rates and quality of life. However, the early symptoms of liver cancer are often not obvious, resulting in a late-stage diagnosis in many patients, which significantly reduces the effectiveness of treatment. Developing a highly targeted, widely applicable, and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals. AIM To develop a liver cancer risk prediction model by employing machine learning techniques, and subsequently assess its performance. METHODS In this study, a total of 550 patients were enrolled, with 190 hepatocellular carcinoma (HCC) and 195 cirrhosis patients serving as the training cohort, and 83 HCC and 82 cirrhosis patients forming the validation cohort. Logistic regression (LR), support vector machine (SVM), random forest (RF), and least absolute shrinkage and selection operator (LASSO) regression models were developed in the training cohort. Model performance was assessed in the validation cohort. Additionally, this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA) to determine the optimal predictive model for assessing liver cancer risk. RESULTS Six variables including age, white blood cell, red blood cell, platelet counts, alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR, SVM, RF, and LASSO regression models. The RF model exhibited superior discrimination, and the area under curve of the training and validation sets was 0.969 and 0.858, respectively. These values significantly surpassed those of the LR (0.850 and 0.827), SVM (0.860 and 0.803), LASSO regression (0.845 and 0.831), and ASAP (0.866 and 0.813) models. Furthermore, calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity. CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
GaryTwisted发布了新的文献求助10
1秒前
Ava应助CD采纳,获得10
1秒前
在水一方应助wsy1029采纳,获得10
1秒前
深情安青应助雾里采纳,获得10
1秒前
十九完成签到,获得积分10
3秒前
zhen完成签到,获得积分10
4秒前
张子捷发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
九零后无心完成签到,获得积分10
6秒前
6秒前
繁荣的代秋完成签到 ,获得积分10
7秒前
JR完成签到,获得积分10
7秒前
TvTiing完成签到,获得积分10
8秒前
banana完成签到,获得积分10
8秒前
666关闭了666文献求助
9秒前
fshell发布了新的文献求助20
9秒前
xm发布了新的文献求助10
10秒前
周声声发布了新的文献求助30
10秒前
11秒前
Lucas应助Dawson采纳,获得10
12秒前
12秒前
12秒前
Enna完成签到,获得积分10
12秒前
13秒前
13秒前
明天你好完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
16秒前
16秒前
liang2508发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154