Construction and evaluation of a liver cancer risk prediction model based on machine learning

医学 Lasso(编程语言) 逻辑回归 接收机工作特性 队列 癌症 肝硬化 肝癌 肝细胞癌 机器学习 随机森林 肿瘤科 内科学 支持向量机 人工智能 计算机科学 万维网
作者
Yingying Wang,Wan-Xia Yang,Qiajun Du,Zhenhua Liu,Ming-Hua Lu,Chongge You
出处
期刊:World Journal of Gastrointestinal Oncology [Baishideng Publishing Group Co (World Journal of Gastrointestinal Oncology)]
卷期号:16 (9): 3839-3850
标识
DOI:10.4251/wjgo.v16.i9.3839
摘要

BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide, and its early detection and treatment are crucial for enhancing patient survival rates and quality of life. However, the early symptoms of liver cancer are often not obvious, resulting in a late-stage diagnosis in many patients, which significantly reduces the effectiveness of treatment. Developing a highly targeted, widely applicable, and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals. AIM To develop a liver cancer risk prediction model by employing machine learning techniques, and subsequently assess its performance. METHODS In this study, a total of 550 patients were enrolled, with 190 hepatocellular carcinoma (HCC) and 195 cirrhosis patients serving as the training cohort, and 83 HCC and 82 cirrhosis patients forming the validation cohort. Logistic regression (LR), support vector machine (SVM), random forest (RF), and least absolute shrinkage and selection operator (LASSO) regression models were developed in the training cohort. Model performance was assessed in the validation cohort. Additionally, this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA) to determine the optimal predictive model for assessing liver cancer risk. RESULTS Six variables including age, white blood cell, red blood cell, platelet counts, alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR, SVM, RF, and LASSO regression models. The RF model exhibited superior discrimination, and the area under curve of the training and validation sets was 0.969 and 0.858, respectively. These values significantly surpassed those of the LR (0.850 and 0.827), SVM (0.860 and 0.803), LASSO regression (0.845 and 0.831), and ASAP (0.866 and 0.813) models. Furthermore, calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity. CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王111完成签到,获得积分10
刚刚
852应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
愉快的真应助科研通管家采纳,获得30
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得30
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
林薯条完成签到,获得积分10
2秒前
2秒前
毛豆发布了新的文献求助10
3秒前
瑾瑜玉完成签到 ,获得积分10
3秒前
酷波er应助王淳采纳,获得10
3秒前
润泽完成签到,获得积分10
3秒前
3秒前
4秒前
Anonyme发布了新的文献求助10
5秒前
香香完成签到,获得积分10
6秒前
122完成签到,获得积分10
6秒前
不许焦绿o完成签到,获得积分10
7秒前
坦率问枫完成签到,获得积分10
7秒前
林薯条发布了新的文献求助10
7秒前
所所应助倩倩家的收藏室采纳,获得10
7秒前
ured发布了新的文献求助20
8秒前
林lin完成签到 ,获得积分10
9秒前
9秒前
满意的皮带完成签到,获得积分10
9秒前
思有完成签到 ,获得积分10
10秒前
3MB完成签到 ,获得积分10
10秒前
完美世界应助小蓝人采纳,获得10
13秒前
吴1234发布了新的文献求助10
14秒前
白鹤发布了新的文献求助10
14秒前
15秒前
雪柚橘子完成签到,获得积分10
15秒前
乘数发布了新的文献求助10
16秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180770
求助须知:如何正确求助?哪些是违规求助? 2830980
关于积分的说明 7982408
捐赠科研通 2492814
什么是DOI,文献DOI怎么找? 1329855
科研通“疑难数据库(出版商)”最低求助积分说明 635802
版权声明 602954