Construction and evaluation of a liver cancer risk prediction model based on machine learning

医学 Lasso(编程语言) 逻辑回归 接收机工作特性 队列 癌症 肝硬化 肝癌 肝细胞癌 机器学习 随机森林 肿瘤科 内科学 支持向量机 人工智能 计算机科学 万维网
作者
Yingying Wang,Wan-Xia Yang,Qiajun Du,Zhenhua Liu,Ming-Hua Lu,Chongge You
出处
期刊:World Journal of Gastrointestinal Oncology [Baishideng Publishing Group Co (World Journal of Gastrointestinal Oncology)]
卷期号:16 (9): 3839-3850
标识
DOI:10.4251/wjgo.v16.i9.3839
摘要

BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide, and its early detection and treatment are crucial for enhancing patient survival rates and quality of life. However, the early symptoms of liver cancer are often not obvious, resulting in a late-stage diagnosis in many patients, which significantly reduces the effectiveness of treatment. Developing a highly targeted, widely applicable, and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals. AIM To develop a liver cancer risk prediction model by employing machine learning techniques, and subsequently assess its performance. METHODS In this study, a total of 550 patients were enrolled, with 190 hepatocellular carcinoma (HCC) and 195 cirrhosis patients serving as the training cohort, and 83 HCC and 82 cirrhosis patients forming the validation cohort. Logistic regression (LR), support vector machine (SVM), random forest (RF), and least absolute shrinkage and selection operator (LASSO) regression models were developed in the training cohort. Model performance was assessed in the validation cohort. Additionally, this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA) to determine the optimal predictive model for assessing liver cancer risk. RESULTS Six variables including age, white blood cell, red blood cell, platelet counts, alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR, SVM, RF, and LASSO regression models. The RF model exhibited superior discrimination, and the area under curve of the training and validation sets was 0.969 and 0.858, respectively. These values significantly surpassed those of the LR (0.850 and 0.827), SVM (0.860 and 0.803), LASSO regression (0.845 and 0.831), and ASAP (0.866 and 0.813) models. Furthermore, calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity. CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kekela1739发布了新的文献求助10
1秒前
从容的鹰发布了新的文献求助10
1秒前
隐形曼青应助儒雅雅山采纳,获得10
2秒前
Sheya发布了新的文献求助10
3秒前
清新的翠发布了新的文献求助10
4秒前
在水一方应助嗯哼哈哈采纳,获得30
4秒前
尽舜尧发布了新的文献求助20
4秒前
jiangjiahao发布了新的文献求助20
5秒前
5秒前
5秒前
6秒前
6秒前
一碗鱼发布了新的文献求助20
6秒前
6秒前
vousme完成签到 ,获得积分10
7秒前
Gengar发布了新的文献求助10
9秒前
蒋若风完成签到,获得积分10
9秒前
蛋子完成签到,获得积分10
9秒前
搜集达人应助嘿咻丶嘿哈采纳,获得10
9秒前
GenX发布了新的文献求助10
9秒前
核桃发布了新的文献求助10
9秒前
10秒前
脑洞疼应助小阳采纳,获得10
10秒前
loading发布了新的文献求助10
10秒前
10秒前
和谐项链发布了新的文献求助10
11秒前
niki完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI2S应助Xwu采纳,获得10
12秒前
12秒前
12秒前
feng完成签到,获得积分10
13秒前
13秒前
lalala发布了新的文献求助10
14秒前
大地之脉关注了科研通微信公众号
14秒前
SciGPT应助无误采纳,获得10
15秒前
儒雅雅山发布了新的文献求助10
15秒前
zzzzzzzz应助加贝采纳,获得10
16秒前
一只菜鸟完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014