Construction and evaluation of a liver cancer risk prediction model based on machine learning

医学 Lasso(编程语言) 逻辑回归 接收机工作特性 队列 癌症 肝硬化 肝癌 肝细胞癌 机器学习 随机森林 肿瘤科 内科学 支持向量机 人工智能 计算机科学 万维网
作者
Yingying Wang,Wan-Xia Yang,Qiajun Du,Zhenhua Liu,Ming-Hua Lu,Chongge You
出处
期刊:World Journal of Gastrointestinal Oncology [Baishideng Publishing Group Co (World Journal of Gastrointestinal Oncology)]
卷期号:16 (9): 3839-3850
标识
DOI:10.4251/wjgo.v16.i9.3839
摘要

BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide, and its early detection and treatment are crucial for enhancing patient survival rates and quality of life. However, the early symptoms of liver cancer are often not obvious, resulting in a late-stage diagnosis in many patients, which significantly reduces the effectiveness of treatment. Developing a highly targeted, widely applicable, and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals. AIM To develop a liver cancer risk prediction model by employing machine learning techniques, and subsequently assess its performance. METHODS In this study, a total of 550 patients were enrolled, with 190 hepatocellular carcinoma (HCC) and 195 cirrhosis patients serving as the training cohort, and 83 HCC and 82 cirrhosis patients forming the validation cohort. Logistic regression (LR), support vector machine (SVM), random forest (RF), and least absolute shrinkage and selection operator (LASSO) regression models were developed in the training cohort. Model performance was assessed in the validation cohort. Additionally, this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA) to determine the optimal predictive model for assessing liver cancer risk. RESULTS Six variables including age, white blood cell, red blood cell, platelet counts, alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR, SVM, RF, and LASSO regression models. The RF model exhibited superior discrimination, and the area under curve of the training and validation sets was 0.969 and 0.858, respectively. These values significantly surpassed those of the LR (0.850 and 0.827), SVM (0.860 and 0.803), LASSO regression (0.845 and 0.831), and ASAP (0.866 and 0.813) models. Furthermore, calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity. CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liu发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
KevenDing完成签到,获得积分10
2秒前
十年小橘完成签到,获得积分10
2秒前
2秒前
陈亚茹发布了新的文献求助10
2秒前
2秒前
贰拾发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
幸运的科研小狗完成签到,获得积分10
2秒前
lingzi1015完成签到,获得积分10
3秒前
chenchunlan96发布了新的文献求助10
3秒前
FRANKFANG发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
深夜酒馆发布了新的文献求助10
5秒前
5秒前
尺素寸心发布了新的文献求助10
5秒前
独角兽发布了新的文献求助10
5秒前
炙热幻灵发布了新的文献求助10
5秒前
嗯哼发布了新的文献求助10
5秒前
zhouleiwang发布了新的文献求助10
5秒前
华仔应助Wonder罗采纳,获得10
6秒前
可靠问旋发布了新的文献求助10
6秒前
乐乐应助AAAA采纳,获得10
6秒前
Tong发布了新的文献求助10
6秒前
香蕉觅云应助Xjing采纳,获得10
6秒前
所所应助Lumos采纳,获得10
6秒前
杨萌发布了新的文献求助10
7秒前
Vegetable_Dog发布了新的文献求助10
7秒前
开始啦完成签到,获得积分10
7秒前
楷沅完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603