Advanced MXene/Graphene Oxide/Lignosulfonate Inks for 3D Printing Thick Electrodes with Vertically Aligned Pores to Dually Boost Mass Loading and Areal Capacitance

材料科学 石墨烯 氧化物 电极 电容 超级电容器 纳米技术 复合材料 光电子学 冶金 物理化学 化学
作者
Haichuan Ye,Yuan He,Tingting You,Feng Xu
出处
期刊:Advanced Functional Materials [Wiley]
被引量:2
标识
DOI:10.1002/adfm.202413343
摘要

Abstract Direct ink writing 3D printing, using ink extrusion, promises to transform conventional 2D thin electrodes into 3D thick architectures for high‐performance supercapacitors. However, formulating 3D printing inks and designing 3D architectures for electrodes remain challenges. In this work, a novel MXene/graphene oxide/lignosulfonate (MGL) ink with excellent rheological properties is developed for 3D printing MGL thick electrodes with vertically aligned architectures. The MGL ink exhibited excellent shear‐thinning properties for smooth 3D printing and shape retention after printing. The 3D‐printed MGL thick electrode, with a thickness of up to 4 mm, achieved a breakthrough mass loading of 72.1 mg cm − 2 , resulting in an extremely high areal capacitance of 8.6 F cm − 2 that is 9.6 times greater than the value observed for the bulk MGL electrode (0.9 F cm − 2 ). Additionally, supercapacitors using the 3D MGL electrode achieved an energy density of 505.3 µWh cm − 2 , significantly surpassing the value for bulk MGL electrode (52.8 µWh cm − 2 ). This enhancement is attributed to the efficient design of the electrodes, where vertically aligned pores in the 3D MGL electrode enhanced ion transfer and reaction kinetics. This study demonstrates an innovative approach for formulating inks and provides guidance for designing 3D thick electrodes with rapid ion transport and excellent electrochemical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhanlonglsj发布了新的文献求助10
1秒前
1秒前
芍药完成签到,获得积分10
1秒前
Yogita完成签到,获得积分10
2秒前
DoctorYan完成签到,获得积分10
2秒前
Adler完成签到,获得积分10
2秒前
3秒前
坐宝马吃地瓜完成签到 ,获得积分10
3秒前
SciGPT应助Strike采纳,获得10
3秒前
自强不息完成签到,获得积分10
3秒前
4秒前
czq发布了新的文献求助30
4秒前
望春风完成签到,获得积分10
4秒前
4秒前
huangJP完成签到,获得积分10
5秒前
情怀应助Tira采纳,获得10
5秒前
王阳洋完成签到,获得积分10
5秒前
5秒前
6秒前
通~发布了新的文献求助10
6秒前
李爱国应助非常可爱采纳,获得20
6秒前
6秒前
7秒前
阿敏发布了新的文献求助10
8秒前
JamesPei应助小憩采纳,获得10
8秒前
jkhjkhj发布了新的文献求助10
8秒前
风中香之发布了新的文献求助30
8秒前
忍冬完成签到,获得积分10
9秒前
Zhong发布了新的文献求助10
10秒前
胡图图关注了科研通微信公众号
10秒前
爱吃泡芙发布了新的文献求助20
10秒前
xiuxiu_27发布了新的文献求助10
10秒前
小书包完成签到,获得积分10
11秒前
xxx发布了新的文献求助10
11秒前
直率的钢铁侠完成签到,获得积分10
11秒前
大模型应助Elaine采纳,获得10
12秒前
花痴的骁完成签到 ,获得积分10
12秒前
F冯发布了新的文献求助10
13秒前
干卿完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740