Spatio-temporal feature extraction network based multi-performance indicators synergetic monitoring method for complex industrial processes

计算机科学 数据挖掘 过程(计算) 子空间拓扑 领域(数学) 人工智能 特征提取 依赖关系(UML) 模式识别(心理学) 机器学习 数学 纯数学 操作系统
作者
Chi Zhang,Jie Dong,Kaixiang Peng,Ruitao Sun
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:257: 125052-125052
标识
DOI:10.1016/j.eswa.2024.125052
摘要

In the context of smart manufacturing, modern industrial processes are becoming increasingly complex in terms of process flows, product varieties, and performance indicators (PIs). Performance-driven process monitoring attracts extensive attentions in recent years. However, most methods require spatio-temporal correspondence between process variables and PIs, and rarely consider the correlation among various PIs. In this paper, a spatio-temporal feature extraction network-based multi-performance indicators synergetic monitoring framework is presented. Firstly, considering the missing data in PI measurements, a weighted sum of tensor nuclear norm (WSTNN) based batch-process data completion approach is developed, which can adeptly handle local missing and incomplete data issues and establish the spatio-temporal correspondence for subsequent modeling. Secondly, for a specific PI, a new canonical variate analysis embedded spatio-temporal convolutional network (CVA-STCN) is designed to extract the PI-related features with spatio-temporal dependency. Thirdly, considering the dynamic interaction of multiple PIs, a third-order feature tensor is established to perform the future fusion, and the correlations among various PI-related features are explored via tensor decomposition. Finally, a hierarchical multi-performance indicators synergetic monitoring model is developed over several subspaces. The proposed method is verified on Tennessee Eastman process and an actual hot strip mill process. Overall, the monitoring performance of the proposed method outperforms the traditional ones, in terms of higher fault detection rates and lower false alarm rates. Moreover, the information provided by the multi-subspace synergetic monitoring charts can offer valuable guidance to field engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mangguobale发布了新的文献求助10
1秒前
2秒前
缥缈冰珍完成签到 ,获得积分10
3秒前
zzt应助ZJL采纳,获得30
4秒前
Lucas应助雨夜星空采纳,获得10
4秒前
5秒前
7秒前
上官若男应助mangguobale采纳,获得10
7秒前
斯文败类应助阳光怀亦采纳,获得10
7秒前
杰青发布了新的文献求助10
9秒前
9秒前
10秒前
搜集达人应助可乐采纳,获得10
10秒前
10秒前
库小学生发布了新的文献求助10
10秒前
11秒前
llllll完成签到 ,获得积分10
12秒前
香蕉觅云应助爱学习采纳,获得30
12秒前
wangwang2168发布了新的文献求助10
13秒前
小巧问柳完成签到 ,获得积分20
13秒前
李爱国应助杰青采纳,获得10
13秒前
14秒前
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
347应助科研通管家采纳,获得10
15秒前
劲秉应助科研通管家采纳,获得20
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
15秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
悦悦呀发布了新的文献求助10
16秒前
19秒前
科研通AI2S应助豆皮采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664