Spatio-temporal feature extraction network based multi-performance indicators synergetic monitoring method for complex industrial processes

计算机科学 数据挖掘 过程(计算) 子空间拓扑 领域(数学) 人工智能 特征提取 依赖关系(UML) 模式识别(心理学) 机器学习 数学 纯数学 操作系统
作者
Chi Zhang,Jie Dong,Kaixiang Peng,Ruitao Sun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:257: 125052-125052
标识
DOI:10.1016/j.eswa.2024.125052
摘要

In the context of smart manufacturing, modern industrial processes are becoming increasingly complex in terms of process flows, product varieties, and performance indicators (PIs). Performance-driven process monitoring attracts extensive attentions in recent years. However, most methods require spatio-temporal correspondence between process variables and PIs, and rarely consider the correlation among various PIs. In this paper, a spatio-temporal feature extraction network-based multi-performance indicators synergetic monitoring framework is presented. Firstly, considering the missing data in PI measurements, a weighted sum of tensor nuclear norm (WSTNN) based batch-process data completion approach is developed, which can adeptly handle local missing and incomplete data issues and establish the spatio-temporal correspondence for subsequent modeling. Secondly, for a specific PI, a new canonical variate analysis embedded spatio-temporal convolutional network (CVA-STCN) is designed to extract the PI-related features with spatio-temporal dependency. Thirdly, considering the dynamic interaction of multiple PIs, a third-order feature tensor is established to perform the future fusion, and the correlations among various PI-related features are explored via tensor decomposition. Finally, a hierarchical multi-performance indicators synergetic monitoring model is developed over several subspaces. The proposed method is verified on Tennessee Eastman process and an actual hot strip mill process. Overall, the monitoring performance of the proposed method outperforms the traditional ones, in terms of higher fault detection rates and lower false alarm rates. Moreover, the information provided by the multi-subspace synergetic monitoring charts can offer valuable guidance to field engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助lnan采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
Marine发布了新的文献求助10
2秒前
香蕉厉发布了新的文献求助30
3秒前
3秒前
CGBIO完成签到,获得积分10
3秒前
3秒前
bingchem发布了新的文献求助200
4秒前
guanguan完成签到,获得积分10
4秒前
fd163c应助来年采纳,获得10
5秒前
wu发布了新的文献求助10
6秒前
7秒前
JACK发布了新的文献求助10
7秒前
19205100313应助啦啦啦采纳,获得10
7秒前
7秒前
8秒前
wanci应助hhhhhhmt采纳,获得10
11秒前
11秒前
友好聋五发布了新的文献求助10
12秒前
13秒前
哈罗发布了新的文献求助10
13秒前
牛油果果发布了新的文献求助10
14秒前
15秒前
Foremelon完成签到,获得积分10
15秒前
15秒前
和平发布了新的文献求助10
16秒前
华华爸完成签到,获得积分20
16秒前
17秒前
中科路2020完成签到,获得积分10
18秒前
shelemi完成签到,获得积分10
19秒前
yc发布了新的文献求助10
19秒前
虚幻的文龙完成签到,获得积分10
19秒前
19秒前
明天更好发布了新的文献求助10
19秒前
白雪皑皑完成签到 ,获得积分10
20秒前
xucc发布了新的文献求助10
20秒前
bkagyin应助猫猫熊采纳,获得10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743745
求助须知:如何正确求助?哪些是违规求助? 3286402
关于积分的说明 10050098
捐赠科研通 3002950
什么是DOI,文献DOI怎么找? 1648568
邀请新用户注册赠送积分活动 784704
科研通“疑难数据库(出版商)”最低求助积分说明 750802