Spatio-temporal feature extraction network based multi-performance indicators synergetic monitoring method for complex industrial processes

计算机科学 数据挖掘 过程(计算) 子空间拓扑 领域(数学) 人工智能 特征提取 依赖关系(UML) 模式识别(心理学) 机器学习 数学 纯数学 操作系统
作者
Chi Zhang,Jie Dong,Kaixiang Peng,Ruitao Sun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:257: 125052-125052
标识
DOI:10.1016/j.eswa.2024.125052
摘要

In the context of smart manufacturing, modern industrial processes are becoming increasingly complex in terms of process flows, product varieties, and performance indicators (PIs). Performance-driven process monitoring attracts extensive attentions in recent years. However, most methods require spatio-temporal correspondence between process variables and PIs, and rarely consider the correlation among various PIs. In this paper, a spatio-temporal feature extraction network-based multi-performance indicators synergetic monitoring framework is presented. Firstly, considering the missing data in PI measurements, a weighted sum of tensor nuclear norm (WSTNN) based batch-process data completion approach is developed, which can adeptly handle local missing and incomplete data issues and establish the spatio-temporal correspondence for subsequent modeling. Secondly, for a specific PI, a new canonical variate analysis embedded spatio-temporal convolutional network (CVA-STCN) is designed to extract the PI-related features with spatio-temporal dependency. Thirdly, considering the dynamic interaction of multiple PIs, a third-order feature tensor is established to perform the future fusion, and the correlations among various PI-related features are explored via tensor decomposition. Finally, a hierarchical multi-performance indicators synergetic monitoring model is developed over several subspaces. The proposed method is verified on Tennessee Eastman process and an actual hot strip mill process. Overall, the monitoring performance of the proposed method outperforms the traditional ones, in terms of higher fault detection rates and lower false alarm rates. Moreover, the information provided by the multi-subspace synergetic monitoring charts can offer valuable guidance to field engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助汕头凯奇采纳,获得10
1秒前
xiaofei完成签到,获得积分20
2秒前
松鼠发布了新的文献求助10
2秒前
Haonan完成签到,获得积分10
2秒前
3秒前
XXX发布了新的文献求助50
3秒前
chocolate发布了新的文献求助10
3秒前
沧海泪发布了新的文献求助10
4秒前
5秒前
112233发布了新的文献求助10
5秒前
吃猫的鱼发布了新的文献求助10
6秒前
6秒前
6秒前
猪皮菠萝包完成签到,获得积分10
7秒前
DCW发布了新的文献求助10
7秒前
氨甲酰磷酸完成签到,获得积分10
7秒前
7秒前
绵绵球应助charles采纳,获得20
8秒前
9秒前
oo发布了新的文献求助10
9秒前
10秒前
yyyr完成签到,获得积分10
10秒前
xxxxxl完成签到,获得积分10
10秒前
11秒前
liutengfei123发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
13秒前
cherlie完成签到,获得积分10
14秒前
默默含卉发布了新的文献求助10
14秒前
DCW完成签到,获得积分10
14秒前
牛牛牛应助cooot采纳,获得10
14秒前
打打应助标致的白桃采纳,获得10
15秒前
15秒前
16秒前
16秒前
火龙果大王完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958850
求助须知:如何正确求助?哪些是违规求助? 3505102
关于积分的说明 11122496
捐赠科研通 3236558
什么是DOI,文献DOI怎么找? 1788899
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802794