Optimal design of time-between-event control charts with parameter estimation

控制图 估计 休哈特个体控制图 统计过程控制 统计 事件(粒子物理) 控制(管理) 计算机科学 EWMA图表 工程类 数学 过程(计算) 人工智能 系统工程 物理 量子力学 操作系统
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,Philippe Castagliola
出处
期刊:Quality Engineering [Informa]
卷期号:: 1-12
标识
DOI:10.1080/08982112.2024.2365838
摘要

The tr chart is a Shewhart-type control chart used to monitor the time between events, especially in high-quality processes. It has been shown to be more efficient than classical attribute control charts based on count data. In practical applications, the in-control process parameters are often unknown and need to be estimated from a Phase I reference sample. When the available Phase I data are small and the chart parameters have to be estimated, a popular approach is to adjust the control chart limits from a conditional perspective to avoid frequent false alarms using the exceedance probability criterion. However, this approach ignores the practitioner-to-practitioner (p-to-p) variation caused by the random Phase I reference samples, which results in getting different control limits and chart performance for each practitioner Large p-to-p variation makes practitioners to have a limited confidence on using their own estimated charts. Hence, in this article, we propose to optimize the tr chart via an exact method so that it has a minimum p-to-p variation. Comparisons between the optimal and conventionally adjusted charts are made in both the in- and out-of-control cases. The most important results are that the optimal chart has a far smaller p-to-p variation and its unconditional average run length values are closer to the desired ones compared to the conventional approach regardless of the in- or out-of-control cases. Finally, two real examples are presented to illustrate the implementation of the proposed chart.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhhyyyy完成签到,获得积分10
刚刚
1秒前
Goyounjung发布了新的文献求助10
1秒前
紫瓜发布了新的文献求助30
1秒前
1秒前
坚定的草丛完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
wanci应助HonneursW采纳,获得10
3秒前
顾矜应助copper采纳,获得10
3秒前
一颗糖完成签到 ,获得积分10
3秒前
4秒前
素简发布了新的文献求助10
5秒前
5秒前
1+1发布了新的文献求助10
6秒前
123456发布了新的文献求助20
6秒前
独特元蝶完成签到,获得积分20
6秒前
6秒前
123完成签到,获得积分20
6秒前
liuwy发布了新的文献求助10
7秒前
7秒前
徐老师完成签到 ,获得积分10
8秒前
独特元蝶发布了新的文献求助10
9秒前
傅。完成签到,获得积分10
9秒前
小何发布了新的文献求助10
10秒前
龍Ryu发布了新的文献求助10
10秒前
深情安青应助祝你开心采纳,获得10
10秒前
qu完成签到 ,获得积分20
11秒前
11秒前
深情安青应助xzm采纳,获得10
11秒前
12秒前
轨迹应助Queena采纳,获得10
12秒前
12秒前
瓜6发布了新的文献求助10
12秒前
13秒前
123发布了新的文献求助30
13秒前
13秒前
13秒前
Aria完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082