Optimal design of time-between-event control charts with parameter estimation

控制图 估计 休哈特个体控制图 统计过程控制 统计 事件(粒子物理) 控制(管理) 计算机科学 EWMA图表 工程类 数学 过程(计算) 人工智能 系统工程 操作系统 物理 量子力学
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,Philippe Castagliola
出处
期刊:Quality Engineering [Informa]
卷期号:: 1-12
标识
DOI:10.1080/08982112.2024.2365838
摘要

The tr chart is a Shewhart-type control chart used to monitor the time between events, especially in high-quality processes. It has been shown to be more efficient than classical attribute control charts based on count data. In practical applications, the in-control process parameters are often unknown and need to be estimated from a Phase I reference sample. When the available Phase I data are small and the chart parameters have to be estimated, a popular approach is to adjust the control chart limits from a conditional perspective to avoid frequent false alarms using the exceedance probability criterion. However, this approach ignores the practitioner-to-practitioner (p-to-p) variation caused by the random Phase I reference samples, which results in getting different control limits and chart performance for each practitioner Large p-to-p variation makes practitioners to have a limited confidence on using their own estimated charts. Hence, in this article, we propose to optimize the tr chart via an exact method so that it has a minimum p-to-p variation. Comparisons between the optimal and conventionally adjusted charts are made in both the in- and out-of-control cases. The most important results are that the optimal chart has a far smaller p-to-p variation and its unconditional average run length values are closer to the desired ones compared to the conventional approach regardless of the in- or out-of-control cases. Finally, two real examples are presented to illustrate the implementation of the proposed chart.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大胆诗云发布了新的文献求助10
2秒前
玦玦天帝完成签到,获得积分10
2秒前
寻人不见发布了新的文献求助30
3秒前
Christyshan发布了新的文献求助10
3秒前
吃一斤猪头肉完成签到 ,获得积分10
3秒前
王者归来完成签到,获得积分10
3秒前
longer发布了新的文献求助10
3秒前
烟花应助Lucien采纳,获得10
3秒前
4秒前
张小哥12完成签到,获得积分10
4秒前
无花果应助guo采纳,获得10
4秒前
小二郎应助MZ采纳,获得10
4秒前
安静发布了新的文献求助10
5秒前
科研通AI2S应助赵念婉采纳,获得10
5秒前
gtx完成签到 ,获得积分10
5秒前
6秒前
小蘑菇应助刘gugu采纳,获得10
6秒前
7秒前
7秒前
7秒前
玦玦天帝发布了新的文献求助10
8秒前
9秒前
9秒前
cgr发布了新的文献求助20
10秒前
Merlin完成签到,获得积分10
10秒前
qiaoj2006发布了新的文献求助10
10秒前
钰小憨完成签到,获得积分10
10秒前
11秒前
11秒前
酷波er应助liv采纳,获得10
11秒前
踏实的惋庭完成签到,获得积分10
12秒前
李健应助婷婷婷不停采纳,获得10
12秒前
12秒前
12秒前
12秒前
13秒前
feezy完成签到,获得积分10
13秒前
D&L发布了新的文献求助10
13秒前
zzl发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685