Taming CO2•– via Synergistic Triple Catalysis in Anti-Markovnikov Hydrocarboxylation of Alkenes

化学 马尔科夫尼科夫法则 催化作用 三键 有机化学 药物化学 立体化学 区域选择性 双键
作者
Pintu Ghosh,Sudip Maiti,Augustin Malandain,Dineshkumar Raja,Olivier Loreau,Bholanath Maity,Triptesh Kumar Roy,Davide Audisio,Debabrata Maiti
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c12294
摘要

The direct utilization of carbon dioxide as an ideal one-carbon source in value-added chemical synthesis has garnered significant attention from the standpoint of global sustainability. In this regard, the photo/electrochemical reduction of CO2 into useful fuels and chemical feedstocks could offer a great promise for the transition to a carbon-neutral economy. However, challenges in product selectivity continue to limit the practical application of these systems. A robust and general method for the conversion of CO2 to the polarity-reversed carbon dioxide radical anion, a C1 synthon, is critical for the successful valorization of CO2 to selective carboxylation reactions. We demonstrate herein a hydride and hydrogen atom transfer synergy driven general catalytic platform involving CO2•– for highly selective anti-Markovnikov hydrocarboxylation of alkenes via triple photoredox, hydride, and hydrogen atom transfer catalysis. Mechanistic studies suggest that the synergistic operation of the triple catalytic cycle ensures a low-steady-state concentration of CO2•– in the reaction medium. This method using a renewable light energy source is mild, robust, selective, and capable of accommodating a wide range of activated and unactivated alkenes. The highly selective nature of the transformation has been revealed through the synthesis of hydrocarboxylic acids from the substrates bearing a hydrogen atom available for intramolecular 1,n-HAT process as well as diastereoselective synthesis. This technology represents a general strategy for the merger of in situ formate generation with a synergistic photoredox and HAA catalytic cycle to provide CO2•– for selective chemical transformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷安完成签到,获得积分10
2秒前
zhao完成签到,获得积分10
3秒前
搜集达人应助翊瑾采纳,获得10
3秒前
4秒前
奇奇吃面完成签到,获得积分10
4秒前
Alicia完成签到,获得积分10
4秒前
Wiggins完成签到,获得积分10
6秒前
口口发布了新的文献求助10
6秒前
huahua完成签到,获得积分10
6秒前
iuv完成签到,获得积分20
6秒前
覃仲荣完成签到,获得积分10
7秒前
爆米花应助转圈晕倒采纳,获得10
7秒前
Owen应助drake采纳,获得10
8秒前
iuv发布了新的文献求助10
9秒前
令狐紫夏完成签到,获得积分10
9秒前
开开心心每一天bnx完成签到 ,获得积分10
9秒前
nyt完成签到,获得积分10
11秒前
晨珂完成签到,获得积分10
11秒前
11秒前
我爱大黄昏完成签到 ,获得积分10
12秒前
几酌应助HAPPY采纳,获得10
13秒前
温暖白梦完成签到,获得积分10
13秒前
14秒前
tt11111完成签到 ,获得积分10
15秒前
OVERSEER发布了新的文献求助30
15秒前
HEIKU应助科研通管家采纳,获得10
15秒前
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
15秒前
大模型应助科研通管家采纳,获得10
16秒前
Cloud应助科研通管家采纳,获得30
16秒前
eternity136应助科研通管家采纳,获得10
16秒前
HEIKU应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
HEIKU应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
16秒前
Owen应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
HEIKU应助科研通管家采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
探索化学的奥秘:电子结构方法 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011