On-Demand Meal Delivery: A Markov Model for Circulating Couriers

马尔可夫链 计算机科学 马尔可夫模型 运筹学 业务 运输工程 工程类 机器学习
作者
Michael G.H. Bell,Dat Tien Le,Jyotirmoyee Bhattacharjya,Glenn Geers
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/trsc.2024.0513
摘要

On-demand meal delivery has become a feature of most cities around the world as a result of platforms and apps that facilitate it as well as the pandemic, which for a period, closed restaurants. Meals are delivered by couriers, typically on bikes, e-bikes, or scooters, who circulate collecting meals from kitchens and delivering them to customers, who usually order online. A Markov model for circulating couriers with n + 1 parameters, where [Formula: see text] is the number of kitchens plus customers, is derived by entropy maximization. There is one parameter for each kitchen and customer representing the demand for a courier, and there is one parameter representing the urgency of delivery. It is shown how the mean and variance of delivery time can be calculated once the parameters are known. The Markov model is irreducible. Two procedures are presented for calibrating model parameters on a data set of orders. Both procedures match known order frequencies with fitted visit probabilities; the first inputs an urgency parameter value and outputs mean delivery time, whereas the second inputs mean delivery time and outputs the corresponding urgency parameter value. Model calibration is demonstrated on a publicly available data set of meal orders from Grubhub. Grubhub data are also used to validate the calibrated model using a likelihood ratio. By changing the location of one kitchen, it is shown how the calibrated model can estimate the resulting change in demand for its meals and the corresponding mean delivery time. The Markov model could also be used for the assignment of courier trips to a street network. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT Conference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
6秒前
seven完成签到,获得积分10
6秒前
Elite发布了新的文献求助30
7秒前
9秒前
10秒前
11235发布了新的文献求助10
12秒前
萧晓完成签到 ,获得积分10
12秒前
药药55完成签到,获得积分10
12秒前
donk发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
Arthur完成签到,获得积分10
14秒前
18275412695发布了新的文献求助10
15秒前
16秒前
风清扬发布了新的文献求助10
16秒前
17秒前
juqiu发布了新的文献求助10
17秒前
19秒前
19秒前
思源应助Hazelwf采纳,获得10
20秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
20秒前
迷路竹完成签到,获得积分10
20秒前
shanyuyulai完成签到 ,获得积分10
21秒前
领导范儿应助juqiu采纳,获得10
21秒前
璐璐完成签到,获得积分10
21秒前
21秒前
LJL完成签到,获得积分20
22秒前
兔子完成签到,获得积分10
22秒前
super chan发布了新的文献求助10
23秒前
drwlr发布了新的文献求助10
24秒前
Owen应助5114采纳,获得10
26秒前
gong完成签到,获得积分10
26秒前
1212发布了新的文献求助10
26秒前
小田完成签到 ,获得积分10
27秒前
依依发布了新的文献求助10
28秒前
小蘑菇应助陈泽宇采纳,获得10
32秒前
32秒前
PhDLi完成签到,获得积分10
33秒前
buno应助小马采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851