On-Demand Meal Delivery: A Markov Model for Circulating Couriers

马尔可夫链 计算机科学 马尔可夫模型 运筹学 业务 运输工程 工程类 机器学习
作者
Michael G.H. Bell,Dat Tien Le,Jyotirmoyee Bhattacharjya,Glenn Geers
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/trsc.2024.0513
摘要

On-demand meal delivery has become a feature of most cities around the world as a result of platforms and apps that facilitate it as well as the pandemic, which for a period, closed restaurants. Meals are delivered by couriers, typically on bikes, e-bikes, or scooters, who circulate collecting meals from kitchens and delivering them to customers, who usually order online. A Markov model for circulating couriers with n + 1 parameters, where [Formula: see text] is the number of kitchens plus customers, is derived by entropy maximization. There is one parameter for each kitchen and customer representing the demand for a courier, and there is one parameter representing the urgency of delivery. It is shown how the mean and variance of delivery time can be calculated once the parameters are known. The Markov model is irreducible. Two procedures are presented for calibrating model parameters on a data set of orders. Both procedures match known order frequencies with fitted visit probabilities; the first inputs an urgency parameter value and outputs mean delivery time, whereas the second inputs mean delivery time and outputs the corresponding urgency parameter value. Model calibration is demonstrated on a publicly available data set of meal orders from Grubhub. Grubhub data are also used to validate the calibrated model using a likelihood ratio. By changing the location of one kitchen, it is shown how the calibrated model can estimate the resulting change in demand for its meals and the corresponding mean delivery time. The Markov model could also be used for the assignment of courier trips to a street network. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT Conference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stt发布了新的文献求助10
刚刚
小蘑菇应助杏花饼采纳,获得10
刚刚
海棠yiyi发布了新的文献求助50
刚刚
camellia完成签到 ,获得积分10
1秒前
1秒前
1秒前
田様应助柠木采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
2秒前
2秒前
2秒前
威武的万仇完成签到 ,获得积分10
3秒前
迷路的水彤完成签到 ,获得积分10
3秒前
千里发布了新的文献求助10
3秒前
jogrgr完成签到,获得积分10
3秒前
夯大力完成签到,获得积分10
3秒前
啊娴仔完成签到,获得积分10
4秒前
4秒前
4秒前
韭菜发布了新的文献求助10
4秒前
Harlotte发布了新的文献求助20
5秒前
思源应助系统提示采纳,获得10
5秒前
蜡笔发布了新的文献求助30
5秒前
宋嬴一发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
HYLynn应助hetao286采纳,获得10
7秒前
9秒前
9秒前
夯大力发布了新的文献求助10
9秒前
9秒前
10秒前
自觉沛芹完成签到,获得积分10
10秒前
YukiXu完成签到 ,获得积分10
10秒前
10秒前
桐桐应助SXM采纳,获得10
11秒前
波特卡斯D艾斯完成签到 ,获得积分10
12秒前
852应助排骨炖豆角采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740