On-Demand Meal Delivery: A Markov Model for Circulating Couriers

马尔可夫链 计算机科学 马尔可夫模型 运筹学 业务 运输工程 工程类 机器学习
作者
Michael G.H. Bell,Dat Tien Le,Jyotirmoyee Bhattacharjya,Glenn Geers
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/trsc.2024.0513
摘要

On-demand meal delivery has become a feature of most cities around the world as a result of platforms and apps that facilitate it as well as the pandemic, which for a period, closed restaurants. Meals are delivered by couriers, typically on bikes, e-bikes, or scooters, who circulate collecting meals from kitchens and delivering them to customers, who usually order online. A Markov model for circulating couriers with n + 1 parameters, where [Formula: see text] is the number of kitchens plus customers, is derived by entropy maximization. There is one parameter for each kitchen and customer representing the demand for a courier, and there is one parameter representing the urgency of delivery. It is shown how the mean and variance of delivery time can be calculated once the parameters are known. The Markov model is irreducible. Two procedures are presented for calibrating model parameters on a data set of orders. Both procedures match known order frequencies with fitted visit probabilities; the first inputs an urgency parameter value and outputs mean delivery time, whereas the second inputs mean delivery time and outputs the corresponding urgency parameter value. Model calibration is demonstrated on a publicly available data set of meal orders from Grubhub. Grubhub data are also used to validate the calibrated model using a likelihood ratio. By changing the location of one kitchen, it is shown how the calibrated model can estimate the resulting change in demand for its meals and the corresponding mean delivery time. The Markov model could also be used for the assignment of courier trips to a street network. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT Conference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的发卡完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
小尬尬发布了新的文献求助10
2秒前
2秒前
所所应助oxygen253采纳,获得10
2秒前
小二郎应助歪瑞古德采纳,获得10
3秒前
研友_VZG7GZ应助丰富的不惜采纳,获得10
3秒前
蜡笔小星发布了新的文献求助10
4秒前
4秒前
4秒前
orixero应助Li656943234采纳,获得10
4秒前
5秒前
薛定谔的猫完成签到,获得积分10
5秒前
MM发布了新的文献求助10
5秒前
小白菜发布了新的文献求助10
6秒前
wqxg140512发布了新的文献求助10
6秒前
6秒前
7秒前
咯哦完成签到,获得积分10
7秒前
fan发布了新的文献求助30
7秒前
啊啊发布了新的文献求助10
7秒前
7秒前
谦让安双完成签到,获得积分10
8秒前
8秒前
浪子完成签到,获得积分10
9秒前
lulu完成签到,获得积分10
9秒前
嘟嘟发布了新的文献求助10
9秒前
10秒前
邓娅琴完成签到 ,获得积分10
10秒前
11秒前
浮游应助坚强的曼雁采纳,获得10
11秒前
11秒前
11秒前
小景007发布了新的文献求助10
12秒前
Pepsi发布了新的文献求助10
12秒前
12秒前
笑点低发布了新的文献求助10
12秒前
kawa发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351102
求助须知:如何正确求助?哪些是违规求助? 4484300
关于积分的说明 13958609
捐赠科研通 4383746
什么是DOI,文献DOI怎么找? 2408614
邀请新用户注册赠送积分活动 1401199
关于科研通互助平台的介绍 1374670