亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On-Demand Meal Delivery: A Markov Model for Circulating Couriers

马尔可夫链 计算机科学 马尔可夫模型 运筹学 业务 运输工程 工程类 机器学习
作者
Michael G.H. Bell,Dat Tien Le,Jyotirmoyee Bhattacharjya,Glenn Geers
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/trsc.2024.0513
摘要

On-demand meal delivery has become a feature of most cities around the world as a result of platforms and apps that facilitate it as well as the pandemic, which for a period, closed restaurants. Meals are delivered by couriers, typically on bikes, e-bikes, or scooters, who circulate collecting meals from kitchens and delivering them to customers, who usually order online. A Markov model for circulating couriers with n + 1 parameters, where [Formula: see text] is the number of kitchens plus customers, is derived by entropy maximization. There is one parameter for each kitchen and customer representing the demand for a courier, and there is one parameter representing the urgency of delivery. It is shown how the mean and variance of delivery time can be calculated once the parameters are known. The Markov model is irreducible. Two procedures are presented for calibrating model parameters on a data set of orders. Both procedures match known order frequencies with fitted visit probabilities; the first inputs an urgency parameter value and outputs mean delivery time, whereas the second inputs mean delivery time and outputs the corresponding urgency parameter value. Model calibration is demonstrated on a publicly available data set of meal orders from Grubhub. Grubhub data are also used to validate the calibrated model using a likelihood ratio. By changing the location of one kitchen, it is shown how the calibrated model can estimate the resulting change in demand for its meals and the corresponding mean delivery time. The Markov model could also be used for the assignment of courier trips to a street network. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT Conference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宝宝完成签到 ,获得积分10
2秒前
光亮静槐完成签到 ,获得积分10
12秒前
14秒前
14秒前
yubin.cao发布了新的文献求助10
21秒前
和风完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
55秒前
57秒前
1分钟前
1分钟前
雪白的听寒完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
斯文败类应助chloe采纳,获得30
1分钟前
権権发布了新的文献求助10
1分钟前
1分钟前
ramsey33完成签到 ,获得积分10
2分钟前
yhw发布了新的文献求助10
2分钟前
2分钟前
英姑应助権権采纳,获得10
2分钟前
2分钟前
注恤明完成签到,获得积分10
3分钟前
李健的小迷弟应助Jiong采纳,获得10
3分钟前
3分钟前
権権发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Jiong发布了新的文献求助10
3分钟前
3分钟前
CipherSage应助百里幻竹采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
百里幻竹发布了新的文献求助10
3分钟前
3分钟前
Michelle发布了新的文献求助10
3分钟前
Michelle完成签到,获得积分20
4分钟前
科研通AI2S应助Michelle采纳,获得10
4分钟前
邹醉蓝发布了新的文献求助10
4分钟前
chloe关注了科研通微信公众号
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538710
求助须知:如何正确求助?哪些是违规求助? 4625778
关于积分的说明 14596871
捐赠科研通 4566436
什么是DOI,文献DOI怎么找? 2503311
邀请新用户注册赠送积分活动 1481402
关于科研通互助平台的介绍 1452772