On-Demand Meal Delivery: A Markov Model for Circulating Couriers

马尔可夫链 计算机科学 马尔可夫模型 运筹学 业务 运输工程 工程类 机器学习
作者
Michael G.H. Bell,Dat Tien Le,Jyotirmoyee Bhattacharjya,Glenn Geers
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/trsc.2024.0513
摘要

On-demand meal delivery has become a feature of most cities around the world as a result of platforms and apps that facilitate it as well as the pandemic, which for a period, closed restaurants. Meals are delivered by couriers, typically on bikes, e-bikes, or scooters, who circulate collecting meals from kitchens and delivering them to customers, who usually order online. A Markov model for circulating couriers with n + 1 parameters, where [Formula: see text] is the number of kitchens plus customers, is derived by entropy maximization. There is one parameter for each kitchen and customer representing the demand for a courier, and there is one parameter representing the urgency of delivery. It is shown how the mean and variance of delivery time can be calculated once the parameters are known. The Markov model is irreducible. Two procedures are presented for calibrating model parameters on a data set of orders. Both procedures match known order frequencies with fitted visit probabilities; the first inputs an urgency parameter value and outputs mean delivery time, whereas the second inputs mean delivery time and outputs the corresponding urgency parameter value. Model calibration is demonstrated on a publicly available data set of meal orders from Grubhub. Grubhub data are also used to validate the calibrated model using a likelihood ratio. By changing the location of one kitchen, it is shown how the calibrated model can estimate the resulting change in demand for its meals and the corresponding mean delivery time. The Markov model could also be used for the assignment of courier trips to a street network. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT Conference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
azz完成签到 ,获得积分10
1秒前
Dracoon完成签到,获得积分10
1秒前
MIZU应助鳗鱼香旋采纳,获得10
1秒前
xgx984完成签到,获得积分10
2秒前
慕青应助1111采纳,获得10
3秒前
Ray发布了新的文献求助10
3秒前
3秒前
梁三柏应助fisher采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
cgsu完成签到,获得积分10
7秒前
大模型应助Dracoon采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
Twonej应助Xiaoxiao采纳,获得30
8秒前
Jeffwgx发布了新的文献求助10
9秒前
HXPHXP发布了新的文献求助10
9秒前
科研通AI6.1应助浅碎时光采纳,获得10
11秒前
马小燕发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
ww发布了新的文献求助10
12秒前
13秒前
张伊洛完成签到,获得积分10
13秒前
15秒前
bkagyin应助guojia采纳,获得10
15秒前
15秒前
科研通AI6.1应助yziy采纳,获得10
15秒前
可可可可汁完成签到 ,获得积分10
15秒前
zz发布了新的文献求助10
16秒前
reck发布了新的文献求助10
16秒前
17秒前
biackgao发布了新的文献求助10
17秒前
17秒前
milu发布了新的文献求助30
18秒前
18秒前
体贴羊完成签到,获得积分20
18秒前
L353052833完成签到,获得积分10
19秒前
儒雅的冷松完成签到,获得积分10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753261
求助须知:如何正确求助?哪些是违规求助? 5479350
关于积分的说明 15377001
捐赠科研通 4892141
什么是DOI,文献DOI怎么找? 2630924
邀请新用户注册赠送积分活动 1579097
关于科研通互助平台的介绍 1534924