亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On-Demand Meal Delivery: A Markov Model for Circulating Couriers

马尔可夫链 计算机科学 马尔可夫模型 运筹学 业务 运输工程 工程类 机器学习
作者
Michael G.H. Bell,Dat Tien Le,Jyotirmoyee Bhattacharjya,Glenn Geers
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/trsc.2024.0513
摘要

On-demand meal delivery has become a feature of most cities around the world as a result of platforms and apps that facilitate it as well as the pandemic, which for a period, closed restaurants. Meals are delivered by couriers, typically on bikes, e-bikes, or scooters, who circulate collecting meals from kitchens and delivering them to customers, who usually order online. A Markov model for circulating couriers with n + 1 parameters, where [Formula: see text] is the number of kitchens plus customers, is derived by entropy maximization. There is one parameter for each kitchen and customer representing the demand for a courier, and there is one parameter representing the urgency of delivery. It is shown how the mean and variance of delivery time can be calculated once the parameters are known. The Markov model is irreducible. Two procedures are presented for calibrating model parameters on a data set of orders. Both procedures match known order frequencies with fitted visit probabilities; the first inputs an urgency parameter value and outputs mean delivery time, whereas the second inputs mean delivery time and outputs the corresponding urgency parameter value. Model calibration is demonstrated on a publicly available data set of meal orders from Grubhub. Grubhub data are also used to validate the calibrated model using a likelihood ratio. By changing the location of one kitchen, it is shown how the calibrated model can estimate the resulting change in demand for its meals and the corresponding mean delivery time. The Markov model could also be used for the assignment of courier trips to a street network. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT Conference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stayreal关注了科研通微信公众号
1秒前
9秒前
stayreal发布了新的文献求助10
14秒前
46秒前
NexusExplorer应助科研通管家采纳,获得10
49秒前
noss发布了新的文献求助10
51秒前
111完成签到 ,获得积分10
55秒前
胖小羊完成签到 ,获得积分10
1分钟前
机智的白猫完成签到 ,获得积分10
1分钟前
林非鹿完成签到,获得积分10
1分钟前
田様应助George采纳,获得10
1分钟前
lhjct0313完成签到 ,获得积分10
1分钟前
1分钟前
George发布了新的文献求助10
2分钟前
2分钟前
临风完成签到,获得积分20
2分钟前
临风发布了新的文献求助10
3分钟前
celinewu完成签到,获得积分10
3分钟前
3分钟前
huge完成签到,获得积分10
4分钟前
Hello应助xuan采纳,获得10
4分钟前
4分钟前
xuan发布了新的文献求助10
4分钟前
4分钟前
深情安青应助科研通管家采纳,获得30
4分钟前
lyp完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
anitachiu1104发布了新的文献求助10
6分钟前
打打应助科研通管家采纳,获得10
6分钟前
wolfen发布了新的文献求助40
8分钟前
8分钟前
8分钟前
9分钟前
手术刀完成签到 ,获得积分10
9分钟前
无与伦比完成签到 ,获得积分10
9分钟前
woxinyouyou完成签到,获得积分0
9分钟前
zhiwei完成签到 ,获得积分0
9分钟前
加菲丰丰完成签到,获得积分0
9分钟前
wolfen完成签到,获得积分20
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770478
求助须知:如何正确求助?哪些是违规求助? 3315488
关于积分的说明 10176448
捐赠科研通 3030505
什么是DOI,文献DOI怎么找? 1662945
邀请新用户注册赠送积分活动 795258
科研通“疑难数据库(出版商)”最低求助积分说明 756704