Consistency-guided Differential Decoding for Enhancing Semi-supervised Medical Image Segmentation

图像分割 解码方法 人工智能 一致性(知识库) 计算机科学 分割 计算机视觉 差速器(机械装置) 医学影像学 图像(数学) 尺度空间分割 模式识别(心理学) 算法 工程类 航空航天工程
作者
Qingjie Zeng,Yutong Xie,Zilin Lu,Mengkang Lu,Jingfeng Zhang,Yuyin Zhou,Yong Xia
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:17
标识
DOI:10.1109/tmi.2024.3429340
摘要

Semi-supervised learning (SSL) has been proven beneficial for mitigating the issue of limited labeled data, especially on volumetric medical image segmentation. Unlike previous SSL methods which focus on exploring highly confident pseudo-labels or developing consistency regularization schemes, our empirical findings suggest that differential decoder features emerge naturally when two decoders strive to generate consistent predictions. Based on the observation, we first analyze the treasure of discrepancy in learning towards consistency, under both pseudo-labeling and consistency regularization settings, and subsequently propose a novel SSL method called LeFeD, which learns the feature-level discrepancies obtained from two decoders, by feeding such information as feedback signals to the encoder. The core design of LeFeD is to enlarge the discrepancies by training differential decoders, and then learn from the differential features iteratively. We evaluate LeFeD against eight state-of-the-art (SOTA) methods on three public datasets. Experiments show LeFeD surpasses competitors without any bells and whistles, such as uncertainty estimation and strong constraints, as well as setting a new state of the art for semi-supervised medical image segmentation. Code has been released at https://github.com/maxwell0027/LeFeD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
pterion完成签到,获得积分10
1秒前
常瑾瑜完成签到,获得积分10
1秒前
迷人灰狼完成签到,获得积分10
2秒前
西一阿铭完成签到,获得积分10
2秒前
CodeCraft应助nn采纳,获得10
2秒前
晓晓发布了新的文献求助10
2秒前
3秒前
任润发布了新的文献求助10
3秒前
咔酱发布了新的文献求助10
6秒前
乔达摩悉达多完成签到 ,获得积分10
6秒前
常瑾瑜发布了新的文献求助10
7秒前
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
生动梦松应助科研通管家采纳,获得150
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
orixero应助温婉的惜文采纳,获得30
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
黄筱筱应助科研通管家采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
8秒前
生动梦松应助科研通管家采纳,获得150
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
黄筱筱应助科研通管家采纳,获得30
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
jiang发布了新的文献求助10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得30
9秒前
pHsycho发布了新的文献求助10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Dean应助科研通管家采纳,获得30
9秒前
生动梦松应助科研通管家采纳,获得150
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924525
求助须知:如何正确求助?哪些是违规求助? 4194571
关于积分的说明 13029123
捐赠科研通 3966454
什么是DOI,文献DOI怎么找? 2173951
邀请新用户注册赠送积分活动 1191426
关于科研通互助平台的介绍 1100971