重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Consistency-Guided Differential Decoding for Enhancing Semi-Supervised Medical Image Segmentation

图像分割 解码方法 人工智能 一致性(知识库) 计算机科学 分割 计算机视觉 差速器(机械装置) 医学影像学 图像(数学) 尺度空间分割 模式识别(心理学) 算法 工程类 航空航天工程
作者
Qingjie Zeng,Yutong Xie,Zilin Lu,Mengkang Lu,Jingfeng Zhang,Yuyin Zhou,Yong Xia
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (1): 44-56 被引量:22
标识
DOI:10.1109/tmi.2024.3429340
摘要

Semi-supervised learning (SSL) has been proven beneficial for mitigating the issue of limited labeled data, especially on volumetric medical image segmentation. Unlike previous SSL methods which focus on exploring highly confident pseudo-labels or developing consistency regularization schemes, our empirical findings suggest that differential decoder features emerge naturally when two decoders strive to generate consistent predictions. Based on the observation, we first analyze the treasure of discrepancy in learning towards consistency, under both pseudo-labeling and consistency regularization settings, and subsequently propose a novel SSL method called LeFeD, which learns the feature-level discrepancies obtained from two decoders, by feeding such information as feedback signals to the encoder. The core design of LeFeD is to enlarge the discrepancies by training differential decoders, and then learn from the differential features iteratively. We evaluate LeFeD against eight state-of-the-art (SOTA) methods on three public datasets. Experiments show LeFeD surpasses competitors without any bells and whistles, such as uncertainty estimation and strong constraints, as well as setting a new state of the art for semi-supervised medical image segmentation. Code has been released at https://github.com/maxwell0027/LeFeD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助小陈采纳,获得50
刚刚
陶醉的薯片完成签到,获得积分10
刚刚
刚刚
余生完成签到,获得积分10
1秒前
rr发布了新的文献求助10
1秒前
现代的曼香完成签到,获得积分10
1秒前
FashionBoy应助沉默的钵钵鸡采纳,获得10
1秒前
乖乖完成签到,获得积分10
2秒前
2秒前
3秒前
哇哦完成签到,获得积分10
3秒前
3秒前
瀚子发布了新的文献求助20
3秒前
小古董发布了新的文献求助10
3秒前
3秒前
彭于晏应助聪明的可愁采纳,获得10
3秒前
落后的寄文完成签到,获得积分10
3秒前
see完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
可爱的函函应助冯珂采纳,获得10
5秒前
5秒前
852应助最最采纳,获得10
5秒前
蒙奇路飞发布了新的文献求助10
5秒前
黄钦清发布了新的文献求助10
7秒前
堪稀完成签到,获得积分10
7秒前
goufufu完成签到,获得积分10
7秒前
7秒前
研友_nVNBVn发布了新的文献求助10
7秒前
李爱国应助诚心青曼采纳,获得10
7秒前
7秒前
龙彦完成签到,获得积分10
7秒前
TT发布了新的文献求助10
8秒前
万能图书馆应助Snoopy采纳,获得10
9秒前
9秒前
hym发布了新的文献求助10
9秒前
发顺丰发布了新的文献求助10
9秒前
weiwei完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567