Consistency-guided Differential Decoding for Enhancing Semi-supervised Medical Image Segmentation

图像分割 解码方法 人工智能 一致性(知识库) 计算机科学 分割 计算机视觉 差速器(机械装置) 医学影像学 图像(数学) 尺度空间分割 模式识别(心理学) 算法 工程类 航空航天工程
作者
Qingjie Zeng,Yutong Xie,Zilin Lu,Mengkang Lu,Jingfeng Zhang,Yuyin Zhou,Yong Xia
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3429340
摘要

Semi-supervised learning (SSL) has been proven beneficial for mitigating the issue of limited labeled data, especially on volumetric medical image segmentation. Unlike previous SSL methods which focus on exploring highly confident pseudo-labels or developing consistency regularization schemes, our empirical findings suggest that differential decoder features emerge naturally when two decoders strive to generate consistent predictions. Based on the observation, we first analyze the treasure of discrepancy in learning towards consistency, under both pseudo-labeling and consistency regularization settings, and subsequently propose a novel SSL method called LeFeD, which learns the feature-level discrepancies obtained from two decoders, by feeding such information as feedback signals to the encoder. The core design of LeFeD is to enlarge the discrepancies by training differential decoders, and then learn from the differential features iteratively. We evaluate LeFeD against eight state-of-the-art (SOTA) methods on three public datasets. Experiments show LeFeD surpasses competitors without any bells and whistles, such as uncertainty estimation and strong constraints, as well as setting a new state of the art for semi-supervised medical image segmentation. Code has been released at https://github.com/maxwell0027/LeFeD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Fury发布了新的文献求助20
1秒前
ruyi发布了新的文献求助10
1秒前
淡淡菠萝发布了新的文献求助10
2秒前
hhhhhhh发布了新的文献求助10
2秒前
liars完成签到 ,获得积分10
4秒前
4秒前
而发的发布了新的文献求助10
5秒前
8秒前
beckvanm完成签到,获得积分10
8秒前
HP发布了新的文献求助10
8秒前
调皮的戎发布了新的文献求助50
8秒前
11秒前
11秒前
12秒前
犹豫的踏歌完成签到,获得积分10
13秒前
ghostR发布了新的文献求助10
15秒前
15秒前
一朵云发布了新的文献求助10
17秒前
17秒前
18秒前
raziel完成签到,获得积分10
19秒前
20秒前
www完成签到 ,获得积分10
21秒前
nieinei完成签到 ,获得积分10
21秒前
21秒前
somous发布了新的文献求助200
21秒前
zhuo发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
科研狗头军师完成签到,获得积分10
28秒前
29秒前
晨初完成签到,获得积分10
29秒前
29秒前
平常的听露关注了科研通微信公众号
30秒前
32秒前
江南烟雨如笙完成签到 ,获得积分10
32秒前
33秒前
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140698
求助须知:如何正确求助?哪些是违规求助? 2791571
关于积分的说明 7799545
捐赠科研通 2447907
什么是DOI,文献DOI怎么找? 1302182
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194