Mitigating Negative Transfer in Cross-Domain Recommendation via Knowledge Transferability Enhancement

可转让性 计算机科学 知识转移 领域(数学分析) 推荐系统 知识管理 情报检索 机器学习 数学 数学分析 罗伊特
作者
Zijian Song,W. Y. Zhang,Lifang Deng,Jiandong Zhang,Zhihua Wu,Kaigui Bian,Bin Cui
标识
DOI:10.1145/3637528.3671799
摘要

Cross-Domain Recommendation (CDR) is a promising technique to alleviate data sparsity by transferring knowledge across domains. However, the negative transfer issue in the presence of numerous domains has received limited attention. Most existing methods transfer all information from source domains to the target domain without distinction. This introduces harmful noise and irrelevant features, resulting in suboptimal performance. Although some methods decompose user features into domain-specific and domain-shared components, they fail to consider other causes of negative transfer. Worse still, we argue that simple feature decomposition is insufficient for multi-domain scenarios. To bridge this gap, we propose TrineCDR, the TRIple-level kNowledge transferability Enhanced model for multi-target CDR. Unlike previous methods, TrineCDR captures single domain and targeted cross-domain embeddings to serve multi-domain recommendation. For the latter, we identify three fundamental causes of negative transfer, ranging from micro to macro perspectives, and correspondingly enhance knowledge transferability at three different levels: the feature level, the interaction level, and the domain level. Through these efforts, TrineCDR effectively filters out noise and irrelevant information from source domains, leading to more comprehensive and accurate representations in the target domain. We extensively evaluate the proposed model on real-world datasets, sampled from Amazon and Douban, under both dual-target and multi-target scenarios. The experimental results demonstrate the superiority of TrineCDR over state-of-the-art cross-domain recommendation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
rad1413发布了新的文献求助10
2秒前
2秒前
orixero应助白华苍松采纳,获得10
3秒前
3秒前
zzz发布了新的文献求助10
3秒前
ZMY应助空曲采纳,获得10
4秒前
4秒前
飞fei发布了新的文献求助10
4秒前
希望天下0贩的0应助wqx采纳,获得10
5秒前
wenqing发布了新的文献求助10
6秒前
小蒋发布了新的文献求助10
6秒前
Cyrus完成签到,获得积分10
7秒前
桐桐应助lyy采纳,获得10
7秒前
Flanker应助AMAME12采纳,获得10
8秒前
微笑的沂发布了新的文献求助10
8秒前
vampirell完成签到,获得积分10
8秒前
萧水白应助大气如曼采纳,获得10
9秒前
9秒前
年轻半雪发布了新的文献求助10
9秒前
朱光辉完成签到,获得积分20
9秒前
思源应助sxwang采纳,获得10
11秒前
11秒前
Lance发布了新的文献求助20
12秒前
所所应助伶俜采纳,获得10
13秒前
领导范儿应助illion1采纳,获得10
14秒前
15秒前
15秒前
17秒前
黄金蛋饺发布了新的文献求助10
17秒前
July完成签到,获得积分10
18秒前
coco完成签到 ,获得积分10
19秒前
957144269发布了新的文献求助10
19秒前
zzzzzh发布了新的文献求助10
19秒前
如意哑铃发布了新的文献求助10
21秒前
21秒前
23秒前
开心千青发布了新的文献求助10
24秒前
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306775
求助须知:如何正确求助?哪些是违规求助? 2940581
关于积分的说明 8497765
捐赠科研通 2614785
什么是DOI,文献DOI怎么找? 1428522
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263