Mitigating Negative Transfer in Cross-Domain Recommendation via Knowledge Transferability Enhancement

可转让性 计算机科学 知识转移 领域(数学分析) 推荐系统 知识管理 情报检索 机器学习 数学 数学分析 罗伊特
作者
Zijian Song,W. Y. Zhang,Lifang Deng,Jiandong Zhang,Zhihua Wu,Kaigui Bian,Bin Cui
标识
DOI:10.1145/3637528.3671799
摘要

Cross-Domain Recommendation (CDR) is a promising technique to alleviate data sparsity by transferring knowledge across domains. However, the negative transfer issue in the presence of numerous domains has received limited attention. Most existing methods transfer all information from source domains to the target domain without distinction. This introduces harmful noise and irrelevant features, resulting in suboptimal performance. Although some methods decompose user features into domain-specific and domain-shared components, they fail to consider other causes of negative transfer. Worse still, we argue that simple feature decomposition is insufficient for multi-domain scenarios. To bridge this gap, we propose TrineCDR, the TRIple-level kNowledge transferability Enhanced model for multi-target CDR. Unlike previous methods, TrineCDR captures single domain and targeted cross-domain embeddings to serve multi-domain recommendation. For the latter, we identify three fundamental causes of negative transfer, ranging from micro to macro perspectives, and correspondingly enhance knowledge transferability at three different levels: the feature level, the interaction level, and the domain level. Through these efforts, TrineCDR effectively filters out noise and irrelevant information from source domains, leading to more comprehensive and accurate representations in the target domain. We extensively evaluate the proposed model on real-world datasets, sampled from Amazon and Douban, under both dual-target and multi-target scenarios. The experimental results demonstrate the superiority of TrineCDR over state-of-the-art cross-domain recommendation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
喃逸完成签到,获得积分10
1秒前
2秒前
3秒前
小溪溪发布了新的文献求助10
5秒前
窦一笑完成签到,获得积分10
5秒前
NexusExplorer应助Duck不必采纳,获得10
6秒前
朱凌娇完成签到,获得积分10
7秒前
7秒前
7秒前
HUU完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
dmcyer完成签到,获得积分10
9秒前
10秒前
10秒前
jiujiujiuo完成签到,获得积分10
10秒前
11秒前
11秒前
从不内卷发布了新的文献求助10
13秒前
激情的凛发布了新的文献求助10
13秒前
啦啦啦完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
A1len完成签到,获得积分10
16秒前
老迟到的钢铁侠完成签到,获得积分10
16秒前
17秒前
29发布了新的文献求助10
17秒前
原来发布了新的文献求助10
18秒前
18秒前
18秒前
kaio完成签到,获得积分10
18秒前
论高等数学的无用性完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
核桃应助Zinc采纳,获得50
22秒前
魏开铭发布了新的文献求助10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144