Mitigating Negative Transfer in Cross-Domain Recommendation via Knowledge Transferability Enhancement

可转让性 计算机科学 知识转移 领域(数学分析) 推荐系统 知识管理 情报检索 机器学习 数学 数学分析 罗伊特
作者
Zijian Song,W. Y. Zhang,Lifang Deng,Jiandong Zhang,Zhihua Wu,Kaigui Bian,Bin Cui
标识
DOI:10.1145/3637528.3671799
摘要

Cross-Domain Recommendation (CDR) is a promising technique to alleviate data sparsity by transferring knowledge across domains. However, the negative transfer issue in the presence of numerous domains has received limited attention. Most existing methods transfer all information from source domains to the target domain without distinction. This introduces harmful noise and irrelevant features, resulting in suboptimal performance. Although some methods decompose user features into domain-specific and domain-shared components, they fail to consider other causes of negative transfer. Worse still, we argue that simple feature decomposition is insufficient for multi-domain scenarios. To bridge this gap, we propose TrineCDR, the TRIple-level kNowledge transferability Enhanced model for multi-target CDR. Unlike previous methods, TrineCDR captures single domain and targeted cross-domain embeddings to serve multi-domain recommendation. For the latter, we identify three fundamental causes of negative transfer, ranging from micro to macro perspectives, and correspondingly enhance knowledge transferability at three different levels: the feature level, the interaction level, and the domain level. Through these efforts, TrineCDR effectively filters out noise and irrelevant information from source domains, leading to more comprehensive and accurate representations in the target domain. We extensively evaluate the proposed model on real-world datasets, sampled from Amazon and Douban, under both dual-target and multi-target scenarios. The experimental results demonstrate the superiority of TrineCDR over state-of-the-art cross-domain recommendation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇发布了新的文献求助10
刚刚
fanmo完成签到 ,获得积分0
1秒前
1秒前
czx发布了新的文献求助10
3秒前
mo完成签到 ,获得积分10
7秒前
李健应助Tree_QD采纳,获得10
7秒前
7秒前
8秒前
nano完成签到 ,获得积分10
8秒前
林生完成签到 ,获得积分10
10秒前
小蘑菇完成签到,获得积分10
11秒前
577发布了新的文献求助10
11秒前
13秒前
隐形曼青应助XS_QI采纳,获得10
19秒前
吴侬软语完成签到 ,获得积分10
19秒前
研友_LX2vJZ完成签到 ,获得积分10
20秒前
波风水门_文献来晚了吗完成签到 ,获得积分10
20秒前
zcr完成签到 ,获得积分10
21秒前
打打应助stoneff612采纳,获得10
22秒前
hhh完成签到 ,获得积分10
22秒前
哈好好哈哈好完成签到 ,获得积分10
25秒前
兔子不吃胡萝卜完成签到 ,获得积分10
28秒前
32秒前
33秒前
科研通AI6.2应助老A采纳,获得10
33秒前
36秒前
鲜于诗霜发布了新的文献求助10
37秒前
czx发布了新的文献求助10
37秒前
38秒前
倚楼听风雨完成签到 ,获得积分10
38秒前
38秒前
39秒前
wuyueyi完成签到 ,获得积分10
39秒前
41秒前
41秒前
41秒前
41秒前
41秒前
41秒前
41秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847541
求助须知:如何正确求助?哪些是违规求助? 6227303
关于积分的说明 15620489
捐赠科研通 4964224
什么是DOI,文献DOI怎么找? 2676489
邀请新用户注册赠送积分活动 1621042
关于科研通互助平台的介绍 1576969