QGRL: Quaternion Graph Representation Learning for Heterogeneous Feature Data Clustering

计算机科学 聚类分析 四元数 特征学习 图形 人工智能 代表(政治) 外部数据表示 模式识别(心理学) 理论计算机科学 数学 几何学 政治 政治学 法学
作者
Junyang Chen,Yuzhu Ji,Rong Zou,Yiqun Zhang,Yiu‐ming Cheung
标识
DOI:10.1145/3637528.3671839
摘要

Clustering is one of the most commonly used techniques for unsupervised data analysis. As real data sets are usually composed of numerical and categorical features that are heterogeneous in nature, the heterogeneity in the distance metric and feature coupling prevents deep representation learning from achieving satisfactory clustering accuracy. Currently, supervised Quaternion Representation Learning (QRL) has achieved remarkable success in efficiently learning informative representations of coupled features from multiple views derived endogenously from the original data. To inherit the advantages of QRL for unsupervised heterogeneous feature representation learning, we propose a deep QRL model that works in an encoder-decoder manner. To ensure that the implicit couplings of heterogeneous feature data can be well characterized by representation learning, a hierarchical coupling encoding strategy is designed to convert the data set into an attributed graph to be the input of QRL. We also integrate the clustering objective into the model training to facilitate a joint optimization of the representation and clustering. Extensive experimental evaluations illustrate the superiority of the proposed Quaternion Graph Representation Learning (QGRL) method in terms of clustering accuracy and robustness to various data sets composed of arbitrary combinations of numerical and categorical features. The source code is opened at https://github.com/Juny-Chen/QGRL.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Pjmeng发布了新的文献求助10
刚刚
鑫渊完成签到,获得积分10
刚刚
why完成签到 ,获得积分10
1秒前
爆米花应助stuffmatter采纳,获得10
2秒前
SYLH应助ly采纳,获得20
2秒前
3秒前
3秒前
4秒前
鸭鸭完成签到,获得积分10
5秒前
5秒前
HUAN完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
研友_VZG7GZ应助失眠的夏蓉采纳,获得10
7秒前
费静芙完成签到,获得积分10
8秒前
9秒前
打打应助uuu采纳,获得10
9秒前
JamesPei应助jou采纳,获得10
10秒前
科研通AI5应助1680Y采纳,获得10
10秒前
10秒前
yinger1984完成签到,获得积分10
11秒前
所所应助多变的卡宾采纳,获得10
11秒前
12秒前
12秒前
Zn应助606采纳,获得20
13秒前
王一生完成签到,获得积分10
13秒前
13秒前
英姑应助一一采纳,获得10
14秒前
14秒前
喜悦中道应助安静的安萱采纳,获得10
14秒前
15秒前
可爱的从寒完成签到,获得积分10
15秒前
黑暗系发布了新的文献求助10
16秒前
16秒前
彭于晏应助努力的小奇采纳,获得10
16秒前
善学以致用应助Pjmeng采纳,获得10
16秒前
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126