EL-Net: An efficient and lightweight optimized network for object detection in remote sensing images

计算机科学 修剪 特征(语言学) 人工智能 计算机视觉 目标检测 钥匙(锁) 模式识别(心理学) 数据挖掘 计算机安全 语言学 哲学 农学 生物
作者
Chao Yi Dong,Xiangkui Jiang,Yihui Hu,Yaoyao Du,Libing Pan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124661-124661 被引量:2
标识
DOI:10.1016/j.eswa.2024.124661
摘要

Object detection in Unmanned Aerial Vehicles (UAV) optical remote sensing imagery presents a formidable challenge in computer vision due to the minuscule size of targets, which occupy fewer pixels and provide limited feature information, complicating accurate recognition and classification. Furthermore, the overlapping of dense targets exacerbates the difficulty of precise classification and localization. Meanwhile, classical detection networks often struggle to balance recognition accuracy with model complexity. Addressing these issues, this paper introduces EL-Net, an efficient and lightweight network model based on improvements to the YOLOv7-tiny architecture. First, the network structure is streamlined through a lightweight design that maintains performance while reducing complexity. Additionally, a feature perception enhancement module (FPEM) using attention mechanisms and dilated convolution significantly improves the model's capability to extract key features from complex backgrounds. Finally, the optimized network structure is compressed by a structured pruning algorithm. EL-Net was evaluated in challenging scenarios on the VisDrone2019 dataset, where it achieved a mean Average Precision (mAP) of 38.7%, demonstrating high detection accuracy at minimal model complexity. Meanwhile, evaluation of the UA-DETRAC dataset has demonstrated the model's remarkable generalization capacity. The outcomes suggest that EL-Net effectively balances accuracy and efficiency, making it ideal for deployment on resource-limited mobile edge devices while offering an innovative approach to object detection in UAV imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助开心小只采纳,获得10
2秒前
小夏完成签到 ,获得积分0
7秒前
小菲完成签到,获得积分10
11秒前
12秒前
现代的bb完成签到,获得积分10
12秒前
脑洞疼应助爱听歌的从筠采纳,获得10
14秒前
16秒前
MAVS完成签到,获得积分10
16秒前
积极的夏天完成签到 ,获得积分10
18秒前
19秒前
深情安青应助科研人员采纳,获得10
21秒前
单纯的手机完成签到,获得积分10
24秒前
24秒前
whh发布了新的文献求助30
25秒前
4born完成签到 ,获得积分10
27秒前
和谐外套完成签到,获得积分10
27秒前
28秒前
情怀应助Shirley采纳,获得10
29秒前
30秒前
Hello应助沐榞采纳,获得10
30秒前
yy完成签到,获得积分10
31秒前
31秒前
32秒前
和谐外套发布了新的文献求助10
34秒前
科研人员发布了新的文献求助10
34秒前
DE2022发布了新的文献求助10
36秒前
38秒前
jj完成签到,获得积分10
38秒前
38秒前
39秒前
太陽应助雨过天晴采纳,获得10
40秒前
40秒前
41秒前
whh发布了新的文献求助30
42秒前
666发布了新的文献求助10
43秒前
44秒前
678完成签到 ,获得积分10
46秒前
48秒前
rudjs完成签到,获得积分10
49秒前
50秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212348
求助须知:如何正确求助?哪些是违规求助? 2861200
关于积分的说明 8127627
捐赠科研通 2527168
什么是DOI,文献DOI怎么找? 1360782
科研通“疑难数据库(出版商)”最低求助积分说明 643322
邀请新用户注册赠送积分活动 615664