已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EL-Net: An efficient and lightweight optimized network for object detection in remote sensing images

计算机科学 修剪 特征(语言学) 人工智能 计算机视觉 目标检测 钥匙(锁) 模式识别(心理学) 数据挖掘 计算机安全 语言学 哲学 农学 生物
作者
Chao Dong,Xiangkui Jiang,Yihui Hu,Yaoyao Du,Libing Pan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124661-124661 被引量:8
标识
DOI:10.1016/j.eswa.2024.124661
摘要

Object detection in Unmanned Aerial Vehicles (UAV) optical remote sensing imagery presents a formidable challenge in computer vision due to the minuscule size of targets, which occupy fewer pixels and provide limited feature information, complicating accurate recognition and classification. Furthermore, the overlapping of dense targets exacerbates the difficulty of precise classification and localization. Meanwhile, classical detection networks often struggle to balance recognition accuracy with model complexity. Addressing these issues, this paper introduces EL-Net, an efficient and lightweight network model based on improvements to the YOLOv7-tiny architecture. First, the network structure is streamlined through a lightweight design that maintains performance while reducing complexity. Additionally, a feature perception enhancement module (FPEM) using attention mechanisms and dilated convolution significantly improves the model's capability to extract key features from complex backgrounds. Finally, the optimized network structure is compressed by a structured pruning algorithm. EL-Net was evaluated in challenging scenarios on the VisDrone2019 dataset, where it achieved a mean Average Precision (mAP) of 38.7%, demonstrating high detection accuracy at minimal model complexity. Meanwhile, evaluation of the UA-DETRAC dataset has demonstrated the model's remarkable generalization capacity. The outcomes suggest that EL-Net effectively balances accuracy and efficiency, making it ideal for deployment on resource-limited mobile edge devices while offering an innovative approach to object detection in UAV imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Zhanghh87采纳,获得10
刚刚
Christina完成签到,获得积分10
1秒前
1秒前
1秒前
故意的茗完成签到,获得积分10
1秒前
1秒前
leif发布了新的文献求助20
1秒前
大个应助俏皮的白柏采纳,获得10
2秒前
XXXXL发布了新的文献求助10
2秒前
猫瓜西发布了新的文献求助10
3秒前
3秒前
贰鸟应助咋取名字采纳,获得10
3秒前
3秒前
3秒前
葛粑粑完成签到 ,获得积分10
4秒前
5秒前
8秒前
mxm12138发布了新的文献求助30
9秒前
liuyue发布了新的文献求助10
10秒前
14秒前
14秒前
Orange应助Lidocaine采纳,获得10
15秒前
15秒前
TRY发布了新的文献求助10
16秒前
Fezz完成签到 ,获得积分10
18秒前
21秒前
22秒前
22秒前
25秒前
26秒前
领导范儿应助俏皮的白柏采纳,获得10
30秒前
31秒前
31秒前
Lidocaine发布了新的文献求助10
31秒前
wiky完成签到,获得积分10
35秒前
大个应助ma采纳,获得10
35秒前
希特勒完成签到,获得积分20
35秒前
zhongu发布了新的文献求助10
35秒前
35秒前
万能图书馆应助HongY采纳,获得10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989811
求助须知:如何正确求助?哪些是违规求助? 3531927
关于积分的说明 11255560
捐赠科研通 3270706
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190