EL-Net: An efficient and lightweight optimized network for object detection in remote sensing images

计算机科学 修剪 特征(语言学) 人工智能 计算机视觉 目标检测 钥匙(锁) 模式识别(心理学) 数据挖掘 计算机安全 语言学 哲学 农学 生物
作者
Chao Dong,Xiangkui Jiang,Yihui Hu,Yaoyao Du,Libing Pan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124661-124661 被引量:11
标识
DOI:10.1016/j.eswa.2024.124661
摘要

Object detection in Unmanned Aerial Vehicles (UAV) optical remote sensing imagery presents a formidable challenge in computer vision due to the minuscule size of targets, which occupy fewer pixels and provide limited feature information, complicating accurate recognition and classification. Furthermore, the overlapping of dense targets exacerbates the difficulty of precise classification and localization. Meanwhile, classical detection networks often struggle to balance recognition accuracy with model complexity. Addressing these issues, this paper introduces EL-Net, an efficient and lightweight network model based on improvements to the YOLOv7-tiny architecture. First, the network structure is streamlined through a lightweight design that maintains performance while reducing complexity. Additionally, a feature perception enhancement module (FPEM) using attention mechanisms and dilated convolution significantly improves the model's capability to extract key features from complex backgrounds. Finally, the optimized network structure is compressed by a structured pruning algorithm. EL-Net was evaluated in challenging scenarios on the VisDrone2019 dataset, where it achieved a mean Average Precision (mAP) of 38.7%, demonstrating high detection accuracy at minimal model complexity. Meanwhile, evaluation of the UA-DETRAC dataset has demonstrated the model's remarkable generalization capacity. The outcomes suggest that EL-Net effectively balances accuracy and efficiency, making it ideal for deployment on resource-limited mobile edge devices while offering an innovative approach to object detection in UAV imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ren完成签到,获得积分10
1秒前
1秒前
可耐的冰巧完成签到,获得积分10
2秒前
2秒前
7秒前
8秒前
风清扬发布了新的文献求助10
8秒前
君知行发布了新的文献求助10
8秒前
9秒前
11秒前
小刘同学发布了新的文献求助10
12秒前
KCC发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助XiaoZhu采纳,获得10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
y1439938345完成签到,获得积分10
16秒前
陶醉迎南完成签到,获得积分10
17秒前
17秒前
18秒前
顾懂发布了新的文献求助10
19秒前
19秒前
秋水揽星河完成签到,获得积分10
19秒前
orixero应助君知行采纳,获得10
19秒前
19秒前
zhoujunjie完成签到,获得积分10
20秒前
111发布了新的文献求助10
20秒前
杰里西完成签到,获得积分20
20秒前
勤劳绿柳完成签到 ,获得积分10
20秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
Cc发布了新的文献求助10
23秒前
25秒前
蓝天完成签到,获得积分10
25秒前
25秒前
谨慎时光完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348