EL-Net: An efficient and lightweight optimized network for object detection in remote sensing images

计算机科学 修剪 特征(语言学) 人工智能 计算机视觉 目标检测 钥匙(锁) 模式识别(心理学) 数据挖掘 计算机安全 语言学 哲学 农学 生物
作者
Chao Dong,Xiangkui Jiang,Yihui Hu,Yaoyao Du,Libing Pan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124661-124661 被引量:11
标识
DOI:10.1016/j.eswa.2024.124661
摘要

Object detection in Unmanned Aerial Vehicles (UAV) optical remote sensing imagery presents a formidable challenge in computer vision due to the minuscule size of targets, which occupy fewer pixels and provide limited feature information, complicating accurate recognition and classification. Furthermore, the overlapping of dense targets exacerbates the difficulty of precise classification and localization. Meanwhile, classical detection networks often struggle to balance recognition accuracy with model complexity. Addressing these issues, this paper introduces EL-Net, an efficient and lightweight network model based on improvements to the YOLOv7-tiny architecture. First, the network structure is streamlined through a lightweight design that maintains performance while reducing complexity. Additionally, a feature perception enhancement module (FPEM) using attention mechanisms and dilated convolution significantly improves the model's capability to extract key features from complex backgrounds. Finally, the optimized network structure is compressed by a structured pruning algorithm. EL-Net was evaluated in challenging scenarios on the VisDrone2019 dataset, where it achieved a mean Average Precision (mAP) of 38.7%, demonstrating high detection accuracy at minimal model complexity. Meanwhile, evaluation of the UA-DETRAC dataset has demonstrated the model's remarkable generalization capacity. The outcomes suggest that EL-Net effectively balances accuracy and efficiency, making it ideal for deployment on resource-limited mobile edge devices while offering an innovative approach to object detection in UAV imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kevin完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
开开发布了新的文献求助10
4秒前
科目三应助安静的时光采纳,获得10
5秒前
含蓄含烟发布了新的文献求助20
5秒前
热情嘉懿发布了新的文献求助10
6秒前
7秒前
8秒前
多情方盒完成签到,获得积分10
9秒前
其7完成签到,获得积分10
9秒前
苍蓝所栖完成签到,获得积分10
10秒前
Hello应助Mason采纳,获得10
11秒前
11秒前
科研劝退完成签到,获得积分10
11秒前
华仔完成签到,获得积分10
12秒前
上官若男应助高高行云采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
wanci应助知止采纳,获得10
13秒前
jpzhou12完成签到,获得积分10
14秒前
热情铭发布了新的文献求助10
15秒前
王1发布了新的文献求助10
15秒前
卷卷完成签到,获得积分10
17秒前
17秒前
17秒前
小白完成签到,获得积分10
18秒前
十九完成签到,获得积分10
18秒前
飘逸小凝给飘逸小凝的求助进行了留言
18秒前
19秒前
8R60d8应助含蓄含烟采纳,获得10
20秒前
英俊的铭应助完美的断缘采纳,获得10
20秒前
wynne313完成签到 ,获得积分10
20秒前
CodeCraft应助蚕宝宝采纳,获得10
21秒前
22秒前
充电宝应助开开采纳,获得10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483942
求助须知:如何正确求助?哪些是违规求助? 4584399
关于积分的说明 14397356
捐赠科研通 4514299
什么是DOI,文献DOI怎么找? 2473912
邀请新用户注册赠送积分活动 1459930
关于科研通互助平台的介绍 1433260