Biochar has been recognized as a promising practice for ameliorating degraded soils, yet the consensus on its effects remains largely unknown due to the variability among biochar, soil and plant. This study therefore presents a meta-analysis synthesizing 92 publications containing 987 paired data to scrutinize biochar effects on salt-affected soil properties and plant productivity. Additionally, a random meta-forest approach was employed to identify the key factors of biochar on salt-affected soil and plant productivity. Results showed that biochar led to significant reductions in electrical conductivity (EC), bulk density (BD) and pH by 7.4%, 4.7% and 1.2% compared to the unamended soil, respectively. Soil organic carbon (by 55.1%) and total nitrogen (by 31.3%) increased significantly with biochar addition. Moreover, biochar overall enhanced plant productivity by 31.5%, and more pronounced increases in forage/medicinal with higher salt tolerance than others. The results also identified that the soil salinity and biochar application rate were the most important co-regulators for EC and PP changes. The structural equation model further showed that soil salinity (P < 0.001), biochar pH (P < 0.001) and biochar specific surface area (P < 0.01) had a significant negative effect on soil EC, but it was positively impacted by biochar pyrolysis temperature (P < 0.05). Furthermore, plant productivity was positively affected by biochar pH (P < 0.001) and biochar feedstock (P < 0.01), while negatively influenced by biochar pyrolysis temperature (P < 0.01). This study highlights that woody biochar with 7.6 < pH < 9.0 and pyrolyzed at 400-600 °C under 30-70 t ha