IoV-BCFL: An intrusion detection method for IoV based on blockchain and federated learning

计算机科学 入侵检测系统 块链 服务拒绝攻击 计算机安全 计算机网络 互联网 操作系统
作者
Nannan Xie,Chuanxue Zhang,Qizhao Yuan,Jing Kong,Xiaoqiang Di
出处
期刊:Ad hoc networks [Elsevier BV]
卷期号:163: 103590-103590
标识
DOI:10.1016/j.adhoc.2024.103590
摘要

In recent years, Internet of Vehicles (IoV) is in a booming stage. But at the same time, the methods of attack against IoV such as Denial of Service (DoS) and deception are great threats to personal and social security. Traditional IoV intrusion detection usually adopts a centralized detection model, which has the disadvantages of untimely detection results and is difficult to protect vehicle privacy in practical applications. Meanwhile, centralized computation requires a large amount of vehicle data transmission, which overloads the wireless bandwidth. Combined the distributed computing resources of Federated Learning (FL) and the decentralized features of blockchain, an IoV intrusion detection framework named IoV-BCFL is proposed, which is capable of distributed intrusion detection and reliable logging with privacy protection. FL is used for distributing training on vehicle nodes and aggregating the training models at Road Side Unit (RSU) to reduce data transmission, protect the privacy of training data, and ensure the security of the model. A blockchain-based intrusion logging mechanism is presented, which enhances vehicle privacy protection through Rivest-Shamir-Adleman (RSA) algorithm encryption and uses Inter Planetary File System (IPFS) to store the intrusion logs. The intrusion behavior can be faithfully recorded by logging smart contract after detecting the intrusion, which can be used to track intruders, analyze security vulnerabilities, and collect evidence. Experiments based on different open source datasets show that FL achieves a high detection rates on intrusion data and effectively reduce the communication overhead, the smart contract performs well on evaluation indicators such as sending rate, latency, and throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和光同尘完成签到,获得积分10
3秒前
从不摸鱼发布了新的文献求助10
3秒前
李爱国应助生动不平采纳,获得10
3秒前
4秒前
俊逸安阳发布了新的文献求助10
4秒前
孙雪松完成签到,获得积分10
4秒前
乐乐应助赶路人采纳,获得30
5秒前
隐形曼青应助小寒同学采纳,获得10
7秒前
简单花花发布了新的文献求助10
7秒前
youngyang完成签到 ,获得积分10
8秒前
8秒前
饶天源发布了新的文献求助10
8秒前
浮游应助FishJelly采纳,获得10
8秒前
曲筱音发布了新的文献求助10
9秒前
Camellia完成签到 ,获得积分10
9秒前
9秒前
wol007完成签到 ,获得积分10
10秒前
俊逸安阳完成签到,获得积分10
11秒前
12秒前
12秒前
田心完成签到,获得积分10
13秒前
天天快乐应助娜子采纳,获得10
13秒前
15秒前
崔双艳完成签到,获得积分10
15秒前
15秒前
刘晓云发布了新的文献求助10
15秒前
17秒前
田様应助qyp采纳,获得10
18秒前
生动不平完成签到,获得积分10
18秒前
Jalinezz完成签到,获得积分10
18秒前
20秒前
生动不平发布了新的文献求助10
22秒前
22秒前
韩soso发布了新的文献求助10
23秒前
詹卫卫完成签到 ,获得积分10
23秒前
23秒前
卡卡完成签到,获得积分10
23秒前
26秒前
Tamarin发布了新的文献求助10
27秒前
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
International Handbook of Earthquake & Engineering Seismology, Part B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5146677
求助须知:如何正确求助?哪些是违规求助? 4343554
关于积分的说明 13527098
捐赠科研通 4184701
什么是DOI,文献DOI怎么找? 2294782
邀请新用户注册赠送积分活动 1295250
关于科研通互助平台的介绍 1238341