清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

IoV-BCFL: An intrusion detection method for IoV based on blockchain and federated learning

计算机科学 入侵检测系统 块链 服务拒绝攻击 计算机安全 计算机网络 互联网 操作系统
作者
Nannan Xie,Chuanxue Zhang,Qizhao Yuan,Jing Kong,Xiaoqiang Di
出处
期刊:Ad hoc networks [Elsevier]
卷期号:163: 103590-103590
标识
DOI:10.1016/j.adhoc.2024.103590
摘要

In recent years, Internet of Vehicles (IoV) is in a booming stage. But at the same time, the methods of attack against IoV such as Denial of Service (DoS) and deception are great threats to personal and social security. Traditional IoV intrusion detection usually adopts a centralized detection model, which has the disadvantages of untimely detection results and is difficult to protect vehicle privacy in practical applications. Meanwhile, centralized computation requires a large amount of vehicle data transmission, which overloads the wireless bandwidth. Combined the distributed computing resources of Federated Learning (FL) and the decentralized features of blockchain, an IoV intrusion detection framework named IoV-BCFL is proposed, which is capable of distributed intrusion detection and reliable logging with privacy protection. FL is used for distributing training on vehicle nodes and aggregating the training models at Road Side Unit (RSU) to reduce data transmission, protect the privacy of training data, and ensure the security of the model. A blockchain-based intrusion logging mechanism is presented, which enhances vehicle privacy protection through Rivest-Shamir-Adleman (RSA) algorithm encryption and uses Inter Planetary File System (IPFS) to store the intrusion logs. The intrusion behavior can be faithfully recorded by logging smart contract after detecting the intrusion, which can be used to track intruders, analyze security vulnerabilities, and collect evidence. Experiments based on different open source datasets show that FL achieves a high detection rates on intrusion data and effectively reduce the communication overhead, the smart contract performs well on evaluation indicators such as sending rate, latency, and throughput.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助lawang采纳,获得10
35秒前
浮游应助lawang采纳,获得10
50秒前
浮游应助lawang采纳,获得10
50秒前
浮游应助lawang采纳,获得10
50秒前
浮游应助lawang采纳,获得10
50秒前
浮游应助lawang采纳,获得10
50秒前
浮游应助lawang采纳,获得10
50秒前
浮游应助lawang采纳,获得10
50秒前
iNk应助lawang采纳,获得10
51秒前
科研通AI2S应助lawang采纳,获得10
51秒前
Akim应助lawang采纳,获得10
51秒前
量子星尘发布了新的文献求助10
1分钟前
饺子猫完成签到,获得积分10
1分钟前
1分钟前
lawang完成签到,获得积分10
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
3分钟前
朱文韬发布了新的文献求助10
3分钟前
朱文韬完成签到,获得积分10
3分钟前
平淡卿完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
li发布了新的文献求助10
4分钟前
kasumi完成签到 ,获得积分20
4分钟前
li完成签到,获得积分10
4分钟前
krajicek完成签到,获得积分10
4分钟前
5分钟前
5分钟前
bkagyin应助当里个当采纳,获得10
6分钟前
jinger完成签到 ,获得积分10
6分钟前
6分钟前
闻巷雨完成签到 ,获得积分10
6分钟前
6分钟前
tt完成签到,获得积分10
6分钟前
当里个当发布了新的文献求助10
6分钟前
6分钟前
傅嘉庆发布了新的文献求助10
7分钟前
SciGPT应助傅嘉庆采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681786
求助须知:如何正确求助?哪些是违规求助? 5013072
关于积分的说明 15176105
捐赠科研通 4841287
什么是DOI,文献DOI怎么找? 2595077
邀请新用户注册赠送积分活动 1548103
关于科研通互助平台的介绍 1506117