IoV-BCFL: An intrusion detection method for IoV based on blockchain and federated learning

计算机科学 入侵检测系统 块链 服务拒绝攻击 计算机安全 计算机网络 互联网 操作系统
作者
Nannan Xie,Chuanxue Zhang,Qizhao Yuan,Jing Kong,Xiaoqiang Di
出处
期刊:Ad hoc networks [Elsevier]
卷期号:163: 103590-103590
标识
DOI:10.1016/j.adhoc.2024.103590
摘要

In recent years, Internet of Vehicles (IoV) is in a booming stage. But at the same time, the methods of attack against IoV such as Denial of Service (DoS) and deception are great threats to personal and social security. Traditional IoV intrusion detection usually adopts a centralized detection model, which has the disadvantages of untimely detection results and is difficult to protect vehicle privacy in practical applications. Meanwhile, centralized computation requires a large amount of vehicle data transmission, which overloads the wireless bandwidth. Combined the distributed computing resources of Federated Learning (FL) and the decentralized features of blockchain, an IoV intrusion detection framework named IoV-BCFL is proposed, which is capable of distributed intrusion detection and reliable logging with privacy protection. FL is used for distributing training on vehicle nodes and aggregating the training models at Road Side Unit (RSU) to reduce data transmission, protect the privacy of training data, and ensure the security of the model. A blockchain-based intrusion logging mechanism is presented, which enhances vehicle privacy protection through Rivest-Shamir-Adleman (RSA) algorithm encryption and uses Inter Planetary File System (IPFS) to store the intrusion logs. The intrusion behavior can be faithfully recorded by logging smart contract after detecting the intrusion, which can be used to track intruders, analyze security vulnerabilities, and collect evidence. Experiments based on different open source datasets show that FL achieves a high detection rates on intrusion data and effectively reduce the communication overhead, the smart contract performs well on evaluation indicators such as sending rate, latency, and throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AKERMAN发布了新的文献求助10
刚刚
北过居庸完成签到,获得积分10
1秒前
cqc发布了新的文献求助10
2秒前
pcr163应助scl采纳,获得200
4秒前
5秒前
请叫我鬼才完成签到,获得积分10
6秒前
脑洞疼应助哎呀小艾哈采纳,获得10
7秒前
木有完成签到 ,获得积分10
8秒前
8秒前
9秒前
玲玲发布了新的文献求助10
10秒前
cqc完成签到,获得积分20
11秒前
落寞臻发布了新的文献求助10
12秒前
12秒前
Re发布了新的文献求助10
15秒前
15秒前
abc123完成签到,获得积分10
15秒前
XMUZH发布了新的文献求助10
16秒前
18秒前
21秒前
Chunlan完成签到,获得积分10
22秒前
Qsss发布了新的文献求助10
24秒前
饱满烙完成签到 ,获得积分10
26秒前
快快跑咯完成签到,获得积分10
26秒前
尛瞐慶成发布了新的文献求助10
26秒前
不配.应助Re采纳,获得10
27秒前
水若琳完成签到,获得积分10
28秒前
28秒前
29秒前
丘比特应助笨蛋采纳,获得10
31秒前
35秒前
诺诺完成签到,获得积分10
35秒前
11发布了新的文献求助10
36秒前
sdsd发布了新的文献求助10
37秒前
Owen应助树呀采纳,获得10
38秒前
五月节发布了新的文献求助10
39秒前
39秒前
40秒前
七七的小西西完成签到 ,获得积分10
40秒前
luckype完成签到,获得积分20
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135027
求助须知:如何正确求助?哪些是违规求助? 2785983
关于积分的说明 7774640
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298184
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825