已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

IoV-BCFL: An intrusion detection method for IoV based on blockchain and federated learning

计算机科学 入侵检测系统 块链 服务拒绝攻击 计算机安全 计算机网络 互联网 操作系统
作者
Nannan Xie,Chuanxue Zhang,Qizhao Yuan,Jing Kong,Xiaoqiang Di
出处
期刊:Ad hoc networks [Elsevier]
卷期号:163: 103590-103590
标识
DOI:10.1016/j.adhoc.2024.103590
摘要

In recent years, Internet of Vehicles (IoV) is in a booming stage. But at the same time, the methods of attack against IoV such as Denial of Service (DoS) and deception are great threats to personal and social security. Traditional IoV intrusion detection usually adopts a centralized detection model, which has the disadvantages of untimely detection results and is difficult to protect vehicle privacy in practical applications. Meanwhile, centralized computation requires a large amount of vehicle data transmission, which overloads the wireless bandwidth. Combined the distributed computing resources of Federated Learning (FL) and the decentralized features of blockchain, an IoV intrusion detection framework named IoV-BCFL is proposed, which is capable of distributed intrusion detection and reliable logging with privacy protection. FL is used for distributing training on vehicle nodes and aggregating the training models at Road Side Unit (RSU) to reduce data transmission, protect the privacy of training data, and ensure the security of the model. A blockchain-based intrusion logging mechanism is presented, which enhances vehicle privacy protection through Rivest-Shamir-Adleman (RSA) algorithm encryption and uses Inter Planetary File System (IPFS) to store the intrusion logs. The intrusion behavior can be faithfully recorded by logging smart contract after detecting the intrusion, which can be used to track intruders, analyze security vulnerabilities, and collect evidence. Experiments based on different open source datasets show that FL achieves a high detection rates on intrusion data and effectively reduce the communication overhead, the smart contract performs well on evaluation indicators such as sending rate, latency, and throughput.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
现代访梦完成签到 ,获得积分10
4秒前
激情的健柏完成签到 ,获得积分10
4秒前
renyi完成签到 ,获得积分10
5秒前
优雅雨柏完成签到,获得积分10
7秒前
khh完成签到 ,获得积分10
7秒前
8秒前
9秒前
行悟完成签到 ,获得积分10
13秒前
14秒前
月关完成签到 ,获得积分10
14秒前
云鹏完成签到 ,获得积分10
14秒前
Kristopher完成签到 ,获得积分10
14秒前
15秒前
15秒前
朴素的书琴完成签到,获得积分10
20秒前
22秒前
NexusExplorer应助水蓝丨剑月采纳,获得30
22秒前
Isabelle完成签到 ,获得积分10
24秒前
小蘑菇应助爱上人家四月采纳,获得10
26秒前
Ava应助隐形的西牛采纳,获得10
27秒前
彭于晏应助BrianSivan采纳,获得10
29秒前
冰激凌完成签到 ,获得积分10
35秒前
36秒前
tiantian完成签到 ,获得积分10
36秒前
36秒前
BrianSivan发布了新的文献求助10
41秒前
41秒前
Nomb1发布了新的文献求助10
41秒前
崔灿完成签到 ,获得积分10
42秒前
希望天下0贩的0应助Nomb1采纳,获得10
46秒前
Hhhhh发布了新的文献求助10
47秒前
短腿小柯基完成签到 ,获得积分10
47秒前
机智白菜发布了新的文献求助30
50秒前
Felix0929完成签到,获得积分10
50秒前
xiaomaxia完成签到,获得积分10
50秒前
老坛完成签到 ,获得积分10
52秒前
52秒前
57秒前
57秒前
科研通AI6应助Hhhhh采纳,获得10
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502564
求助须知:如何正确求助?哪些是违规求助? 4598355
关于积分的说明 14463932
捐赠科研通 4531953
什么是DOI,文献DOI怎么找? 2483736
邀请新用户注册赠送积分活动 1466943
关于科研通互助平台的介绍 1439576