已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

IoV-BCFL: An intrusion detection method for IoV based on blockchain and federated learning

计算机科学 入侵检测系统 块链 服务拒绝攻击 计算机安全 计算机网络 互联网 操作系统
作者
Nannan Xie,Chuanxue Zhang,Qizhao Yuan,Jing Kong,Xiaoqiang Di
出处
期刊:Ad hoc networks [Elsevier]
卷期号:163: 103590-103590
标识
DOI:10.1016/j.adhoc.2024.103590
摘要

In recent years, Internet of Vehicles (IoV) is in a booming stage. But at the same time, the methods of attack against IoV such as Denial of Service (DoS) and deception are great threats to personal and social security. Traditional IoV intrusion detection usually adopts a centralized detection model, which has the disadvantages of untimely detection results and is difficult to protect vehicle privacy in practical applications. Meanwhile, centralized computation requires a large amount of vehicle data transmission, which overloads the wireless bandwidth. Combined the distributed computing resources of Federated Learning (FL) and the decentralized features of blockchain, an IoV intrusion detection framework named IoV-BCFL is proposed, which is capable of distributed intrusion detection and reliable logging with privacy protection. FL is used for distributing training on vehicle nodes and aggregating the training models at Road Side Unit (RSU) to reduce data transmission, protect the privacy of training data, and ensure the security of the model. A blockchain-based intrusion logging mechanism is presented, which enhances vehicle privacy protection through Rivest-Shamir-Adleman (RSA) algorithm encryption and uses Inter Planetary File System (IPFS) to store the intrusion logs. The intrusion behavior can be faithfully recorded by logging smart contract after detecting the intrusion, which can be used to track intruders, analyze security vulnerabilities, and collect evidence. Experiments based on different open source datasets show that FL achieves a high detection rates on intrusion data and effectively reduce the communication overhead, the smart contract performs well on evaluation indicators such as sending rate, latency, and throughput.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
bkagyin应助和abc采纳,获得10
3秒前
星辰大海应助嘻嘻采纳,获得10
8秒前
tianyi完成签到,获得积分10
9秒前
10秒前
陈霸下。发布了新的文献求助10
10秒前
小二郎应助不想写sci的黄采纳,获得10
11秒前
可乐完成签到,获得积分10
11秒前
尼古拉斯铁柱完成签到 ,获得积分10
13秒前
熊熊阁发布了新的文献求助10
15秒前
Amy完成签到 ,获得积分10
16秒前
大火炉发布了新的文献求助10
16秒前
攀登发布了新的文献求助10
17秒前
18秒前
19秒前
saber发布了新的文献求助10
19秒前
CodeCraft应助满丘山采纳,获得10
21秒前
珊珊来迟完成签到,获得积分10
21秒前
21秒前
Seed完成签到,获得积分10
22秒前
科目三应助晴空万里采纳,获得10
25秒前
26秒前
wlf发布了新的文献求助30
26秒前
Wang完成签到 ,获得积分10
27秒前
Cooper应助干净巧荷采纳,获得10
29秒前
天天呼的海角完成签到,获得积分10
29秒前
30秒前
33秒前
33秒前
陈咪咪完成签到 ,获得积分10
34秒前
Orange应助cjlinhunu采纳,获得10
34秒前
JeromineJade发布了新的文献求助10
36秒前
酸海椒发布了新的文献求助10
37秒前
Lee发布了新的文献求助10
38秒前
38秒前
情怀应助JaneChen采纳,获得30
39秒前
潇洒的觅柔完成签到,获得积分10
40秒前
Mic应助舒服的水壶采纳,获得10
41秒前
嘻嘻发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938