IoV-BCFL: An intrusion detection method for IoV based on blockchain and federated learning

计算机科学 入侵检测系统 块链 服务拒绝攻击 计算机安全 计算机网络 互联网 操作系统
作者
Nannan Xie,Chuanxue Zhang,Qizhao Yuan,Jing Kong,Xiaoqiang Di
出处
期刊:Ad hoc networks [Elsevier]
卷期号:163: 103590-103590
标识
DOI:10.1016/j.adhoc.2024.103590
摘要

In recent years, Internet of Vehicles (IoV) is in a booming stage. But at the same time, the methods of attack against IoV such as Denial of Service (DoS) and deception are great threats to personal and social security. Traditional IoV intrusion detection usually adopts a centralized detection model, which has the disadvantages of untimely detection results and is difficult to protect vehicle privacy in practical applications. Meanwhile, centralized computation requires a large amount of vehicle data transmission, which overloads the wireless bandwidth. Combined the distributed computing resources of Federated Learning (FL) and the decentralized features of blockchain, an IoV intrusion detection framework named IoV-BCFL is proposed, which is capable of distributed intrusion detection and reliable logging with privacy protection. FL is used for distributing training on vehicle nodes and aggregating the training models at Road Side Unit (RSU) to reduce data transmission, protect the privacy of training data, and ensure the security of the model. A blockchain-based intrusion logging mechanism is presented, which enhances vehicle privacy protection through Rivest-Shamir-Adleman (RSA) algorithm encryption and uses Inter Planetary File System (IPFS) to store the intrusion logs. The intrusion behavior can be faithfully recorded by logging smart contract after detecting the intrusion, which can be used to track intruders, analyze security vulnerabilities, and collect evidence. Experiments based on different open source datasets show that FL achieves a high detection rates on intrusion data and effectively reduce the communication overhead, the smart contract performs well on evaluation indicators such as sending rate, latency, and throughput.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研Yu采纳,获得10
刚刚
colin发布了新的文献求助10
刚刚
鸡蛋完成签到,获得积分10
1秒前
1秒前
2秒前
小耀君发布了新的文献求助30
2秒前
dll完成签到,获得积分10
2秒前
2秒前
田様应助ctttt采纳,获得10
2秒前
2秒前
香蕉觅云应助沉默天宇采纳,获得10
3秒前
隐形曼青应助cc采纳,获得10
3秒前
3秒前
上官若男应助cdbb采纳,获得10
4秒前
5秒前
5秒前
邓佩雨完成签到,获得积分10
5秒前
祖乐松发布了新的文献求助10
5秒前
梦XING发布了新的文献求助10
5秒前
5秒前
FlipFlops发布了新的文献求助10
5秒前
sunrise_99完成签到,获得积分10
5秒前
6秒前
Criminology34应助ljw采纳,获得10
6秒前
爆米花应助晓世采纳,获得10
7秒前
TCA发布了新的文献求助10
7秒前
fool完成签到,获得积分10
8秒前
8秒前
天天快乐应助dongjingbutaire采纳,获得10
8秒前
好好学习呀完成签到,获得积分10
8秒前
独特的绿蝶完成签到,获得积分10
8秒前
小二郎应助路人甲采纳,获得10
9秒前
能干雁凡发布了新的文献求助10
9秒前
得闲完成签到,获得积分10
9秒前
9秒前
我是125完成签到,获得积分10
9秒前
Freesia发布了新的文献求助10
9秒前
Hello应助chen采纳,获得10
9秒前
10秒前
可爱小菜发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163