适体
清脆的
体内
质粒
材料科学
纳米技术
化学
分子生物学
生物
生物化学
基因
生物技术
作者
Sourav Sarkar,Parikshit Moitra,Wei Duan,Santanu Bhattacharya
标识
DOI:10.1002/adhm.202402259
摘要
Epithelial cell adhesion molecule (EpCAM) gene encodes a type-I trans-membrane glycoprotein that is overexpressed in many cancerous epithelial cells and promotes tumor progression by regulating the expression of several oncogenes like c-myc and other cyclins. Because of this tumorigenic association, the EpCAM gene has been a potential target for anti-cancer therapy in recent days. Herein, it is attempted to knockout the proto-oncogenic EpCAM expression by efficiently delivering an all-in-one Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) plasmid via a lipid nanoparticle system made out of synthetic stimuli-sensitive lipids. The plasmid possesses the necessary information in the form of a guide RNA targeted to the EpCAM gene. The aptamer decorated system selectively targets EpCAM overexpressed cells and efficiently inhibits the genetic expression. It has explored the pH-responsive property of the developed lipid nanoparticles and monitored their efficacy in various cancer cell lines of different origins with elevated EpCAM levels. The phenomenon has further been validated in vivo in non-immunocompromised mouse tumor models. Overall, the newly developed aptamer decorated lipid nanoparticle system has been proven to be efficacious for the delivery of EpCAM-targeted CRISPR/Cas9 plasmid.
科研通智能强力驱动
Strongly Powered by AbleSci AI