Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions

污染物 降级(电信) 臭氧 盐度 传质 水溶液 环境化学 流出物 化学 传质系数 溶解度 水处理 环境科学 化学工程 环境工程 色谱法 工程类 有机化学 电信 生物 生态学 计算机科学
作者
Priya Koundle,Neelkanth Nirmalkar,Malwina Momotko,Grzegorz Boczkaj
出处
期刊:Water Research [Elsevier]
卷期号:263: 122148-122148 被引量:51
标识
DOI:10.1016/j.watres.2024.122148
摘要

Conventional water treatment systems frequently exhibit diminished efficiency at high salinity - a significant issue especially for real industrial effluents - mostly due to the creation of intricate structures between pollutants and salts. One of the primary obstacles associated with high salinity conditions is the generation of by-products that pose additional hurdles for treatment. In this work, we have investigated the novel advanced oxidation process a so-called ozone nanobubble technology for degradation of the pollutants at high salinity conditions. The mass transfer is often the rate-limiting step in gas-liquid process and the poor rate of mass transfer diminishes the overall efficacy. One of the primary disadvantages associated with ozone is its restricted solubility and instability when dissolved in an aqueous solution. These characteristics impose limitations on its potential applications and need the use of specialized systems to facilitate gas-liquid interaction. In this work, we have also suggested enhancing the ozonation process through the utilization of ozone nanobubbles. The findings of our experiment and subsequent analysis indicate that the presence of nanobubbles enhances the process of ozonation through three key mechanisms: (i) an increased mass transfer coefficient, (ii) a higher rate of reactive oxygen species (ROS) generation attributed to the charged interface, and (iii) the nanobubble interface serving as an active surface for chemical reactions. The predicted mass transfer coefficients were found to range from 3 to 3.5 min
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正己烷完成签到 ,获得积分10
1秒前
爱诺诺完成签到,获得积分10
2秒前
xiaoxu发布了新的文献求助10
2秒前
gdgd完成签到,获得积分10
2秒前
ChuangyangLi发布了新的文献求助10
3秒前
心怡发布了新的文献求助10
3秒前
qq完成签到,获得积分20
3秒前
rrrrrr完成签到,获得积分20
4秒前
4秒前
4秒前
Shohan完成签到 ,获得积分10
6秒前
7秒前
7秒前
发的不太好完成签到,获得积分10
7秒前
上官若男应助DyG采纳,获得10
8秒前
8秒前
qq发布了新的文献求助10
9秒前
任寒松完成签到,获得积分10
9秒前
9秒前
chc完成签到,获得积分10
9秒前
ccm应助科研眼镜蛇采纳,获得10
9秒前
研究牲发布了新的文献求助10
9秒前
White_Night完成签到 ,获得积分10
10秒前
11秒前
Lynth_雪鸮发布了新的文献求助10
11秒前
Lucas应助吕白莲采纳,获得10
12秒前
令和发布了新的文献求助10
12秒前
AS完成签到,获得积分10
12秒前
大力寒荷发布了新的文献求助10
13秒前
小小应助明理的帆布鞋采纳,获得10
14秒前
顾矜应助Xu采纳,获得10
14秒前
杨桑完成签到 ,获得积分10
15秒前
ding应助国王的宝库采纳,获得10
15秒前
15秒前
16秒前
17秒前
18秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
辛尘完成签到,获得积分10
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620793
求助须知:如何正确求助?哪些是违规求助? 4705330
关于积分的说明 14931678
捐赠科研通 4763128
什么是DOI,文献DOI怎么找? 2551196
邀请新用户注册赠送积分活动 1513780
关于科研通互助平台的介绍 1474661