强化学习
运动规划
马尔可夫决策过程
趋同(经济学)
计算机科学
路径(计算)
数学优化
适应性
弹道
规划师
理论(学习稳定性)
运动学
马尔可夫过程
人工智能
机器人
数学
机器学习
生态学
统计
物理
经典力学
天文
程序设计语言
经济
生物
经济增长
作者
Babak Salamat,Sebastian-Sven Olzem,Gerhard Elsbacher,Andrea M. Tonello
出处
期刊:IEEE open journal of control systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:3: 405-415
标识
DOI:10.1109/ojcsys.2024.3435080
摘要
In this paper, we introduce the Global Multi-Phase Path Planning (GMP 3 ) algorithm in planner problems, which computes fast and feasible trajectories in environments with obstacles, considering physical and kinematic constraints. Our approach utilizes a Markov Decision Process (MDP) framework and high-level reinforcement learning techniques to ensure trajectory smoothness, continuity, and compliance with constraints. Through extensive simulations, we demonstrate the algorithm's effectiveness and efficiency across various scenarios. We highlight existing path planning challenges, particularly in integrating dynamic adaptability and computational efficiency. The results validate our method's convergence guarantees using Lyapunov's stability theorem and underscore its computational advantages.
科研通智能强力驱动
Strongly Powered by AbleSci AI