ECM-YOLO: A real-time detection method of steel surface defects based on multi-scale convolution

卷积(计算机科学) 比例(比率) 曲面(拓扑) 计算机科学 人工智能 材料科学 数学 几何学 物理 人工神经网络 量子力学
作者
C.H. Yan,Ee Xu
出处
期刊:Journal of the Optical Society of America [The Optical Society]
卷期号:41 (10): 1905-1905
标识
DOI:10.1364/josaa.533407
摘要

Steel surface defects, characterized by multiple types, varied scales, and overlapping occurrences, directly impact the quality, performance, and reliability of industrial products. Proposing a high-precision and high-speed steel surface defect detection algorithm is crucial for ensuring product quality. In this regard, this paper introduces ECM-YOLO, a detection network based on YOLOv8n. First, addressing the insufficient information capture of the C2f module, the C2f enhanced multiscale convolution processing (C2f_EMSCP) module is proposed, enhancing global and local feature capture capabilities through multiscale convolutions. Second, to further enhance the network’s robustness and focus on critical information, the channel prior convolutional attention (CPCA) mechanism is integrated between the backbone and neck networks to facilitate more efficient information transmission. Last, a novel, to the best of our knowledge, detection head, i.e., multiscale simple and efficient anchor matching head (MultiSEAMHead), is proposed to mitigate accuracy issues arising from overlaps between different types of defects. Experimental results demonstrate that ECM-YOLO achieves mAPs of 78.9% and 68.2% on the NEU-DET and GC 10-DET data sets, respectively, outperforming YOLOv8n by 2.5% and 4.4%. Moreover, ECM-YOLO excels in model parameters, computational efficiency, and inference speed compared with other models. These findings highlight the applicability of ECM-YOLO for real-time defect detection in industrial settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助想疯采纳,获得10
1秒前
1秒前
1秒前
2秒前
五月既望完成签到,获得积分10
2秒前
00发布了新的文献求助10
3秒前
发嗲的高跟鞋完成签到,获得积分20
3秒前
4秒前
科研通AI2S应助Zjin宇采纳,获得10
4秒前
JamesPei应助Bodhicia采纳,获得10
5秒前
小z发布了新的文献求助10
6秒前
高雅完成签到 ,获得积分10
6秒前
大兔子yo发布了新的文献求助100
7秒前
Hayley发布了新的文献求助30
7秒前
刚好夏天完成签到 ,获得积分10
9秒前
脑洞疼应助杰森斯坦虎采纳,获得10
11秒前
搜集达人应助lee采纳,获得10
12秒前
13秒前
李健的小迷弟应助pjs采纳,获得10
14秒前
富贵完成签到,获得积分10
16秒前
1234完成签到,获得积分10
17秒前
玖梦发布了新的文献求助10
18秒前
大模型应助整齐凌萱采纳,获得10
20秒前
孤独元容发布了新的文献求助10
20秒前
wyz完成签到 ,获得积分10
20秒前
粗心的草莓完成签到,获得积分10
20秒前
无辜幻灵完成签到 ,获得积分10
20秒前
zinnia完成签到,获得积分10
21秒前
21秒前
23秒前
zZ完成签到,获得积分10
23秒前
Orange应助YUYU采纳,获得10
24秒前
24秒前
小赵完成签到 ,获得积分10
24秒前
传奇3应助Zorn采纳,获得10
25秒前
lee发布了新的文献求助10
25秒前
ZLQ2023完成签到,获得积分10
26秒前
26秒前
典雅的寄凡完成签到 ,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138986
求助须知:如何正确求助?哪些是违规求助? 2789907
关于积分的说明 7793124
捐赠科研通 2446296
什么是DOI,文献DOI怎么找? 1301017
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096