Q-learning based hyper-heuristic with clustering strategy for combinatorial optimization: A case study on permutation flow-shop scheduling problem

聚类分析 计算机科学 排列(音乐) 局部搜索(优化) 数学优化 人口 车辆路径问题 启发式 调度(生产过程) 组合搜索 组合优化 波束搜索 搜索算法 数学 算法 人工智能 布线(电子设计自动化) 物理 声学 计算机网络 人口学 社会学
作者
Yuanyuan Yang,Bin Qian,Zuocheng Li,Rong Hu,Ling Wang
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:173: 106833-106833 被引量:1
标识
DOI:10.1016/j.cor.2024.106833
摘要

In this paper, a Q-learning based hyper-heuristic with clustering strategy (QHH/CS) is proposed for combinatorial optimization problems (COPs). In QHH/CS, a clustering strategy based on low-dimensional mapping method is devised to map initial population to a low-dimensional space, thus obtaining multiple subpopulations accounting for different search directions. To discover more promising search regions around each subpopulation, we propose a parallel Q-learning search mechanism composed of multiple search components, including multi-subpopulation Q-table, state extraction method, contribution-driven reward function, and deep mining local search actions. Relying on these search components, QHH/CS identifies the variations of the objective values of subpopulations to evaluate the solution features of COPs, whereby valuable information can be learned during the search process of the algorithm. To illustrate the effectiveness of QHH/CS, it is applied to solve the permutation flow-shop scheduling problem. We additionally assess QHH/CS through the well-known vehicle routing problem, which confirms the general search ability of the algorithm for COPs. Moreover, the convergence analysis of the QHH/CS algorithm is performed, providing theoretical guidance for the optimization process of the proposed algorithm. Results of experiments demonstrate that QHH/CS can find high-quality solutions to the solved problems
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助默默的凡梅采纳,获得10
1秒前
1秒前
1秒前
苹果发布了新的文献求助10
3秒前
5秒前
xu发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
丁俊杰发布了新的文献求助10
6秒前
Xenia完成签到,获得积分10
6秒前
7秒前
小管完成签到,获得积分10
7秒前
8秒前
8秒前
西门发发发布了新的文献求助10
8秒前
Ly发布了新的文献求助10
9秒前
Jasper应助liii采纳,获得10
9秒前
LAST发布了新的文献求助10
10秒前
生动刺猬完成签到,获得积分20
11秒前
simon完成签到,获得积分10
11秒前
英姑应助nmamtf采纳,获得30
12秒前
研友_VZG7GZ应助Reese采纳,获得10
12秒前
13秒前
丁俊杰完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
reds给reds的求助进行了留言
17秒前
大模型应助kersen采纳,获得10
17秒前
r41r32完成签到 ,获得积分10
19秒前
追寻寄灵发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
qingsyxuan发布了新的文献求助10
20秒前
昵称有敏感词应助simon采纳,获得10
22秒前
22秒前
zhang123完成签到,获得积分10
23秒前
呢咕啦嘶嘚咕啦完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952646
求助须知:如何正确求助?哪些是违规求助? 3498064
关于积分的说明 11090366
捐赠科研通 3228670
什么是DOI,文献DOI怎么找? 1785032
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349