Lightweight concrete crack detection based on spiking neural networks

人工神经网络 结构工程 计算机科学 尖峰神经网络 工程类 人工智能
作者
Wujian Ye,Hao Xiang Huang,Boning Zhang,Yijun Liu,Ziqi Lin
出处
期刊:Engineering Computations [Emerald (MCB UP)]
标识
DOI:10.1108/ec-05-2024-0404
摘要

Purpose Most existing methods for concrete crack detection are based on deep learning techniques such as convolutional neural networks. However, these models, due to their large memory footprint, high power consumption and insufficient feature extraction capabilities, face challenges in mobile applications. To address these issues, this paper proposes a lightweight spiking neural network detection model. Design/methodology/approach This model achieves fast and accurate crack detection. Firstly, the Gabor-Spiking (GS) module preprocesses input images, extracting texture features and edge features of crack images through Gabor filter convolution modules and spiking convolution modules, respectively. Next, the multiscale residual (MR) module is designed, composed of convolutional layers and residual modules of various scales, to process the fused features and perform crack detection. Findings Experimental results demonstrate that the model’s size can be reduced to 4.6 MB, achieving accuracy improvements to 87.3 and 96.4% on the SDNET and OCD datasets, respectively. Originality/value This paper proposes a lightweight spiking neural network detection model based on the GS module for edge texture feature fusion and the MR module for crack detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助听思念渐近采纳,获得10
1秒前
凉生完成签到,获得积分10
1秒前
跳跃的太君完成签到,获得积分10
2秒前
端庄白猫发布了新的文献求助10
3秒前
lala完成签到 ,获得积分10
3秒前
踏实麦片完成签到,获得积分20
3秒前
kelly发布了新的文献求助10
4秒前
5秒前
善学以致用应助LZL采纳,获得10
6秒前
荔枝发布了新的文献求助10
6秒前
7秒前
孟孟发布了新的文献求助10
7秒前
思源应助雷雷采纳,获得10
9秒前
10秒前
11秒前
科研顺利关注了科研通微信公众号
12秒前
12秒前
sen123完成签到 ,获得积分10
14秒前
受伤寻梅发布了新的文献求助10
15秒前
妮儿发布了新的文献求助10
15秒前
哆啦A梦的小小王完成签到,获得积分10
17秒前
ming完成签到,获得积分10
18秒前
19秒前
19秒前
21秒前
22秒前
evilhag发布了新的文献求助10
22秒前
搞怪烨伟发布了新的文献求助10
22秒前
月光颂博客完成签到 ,获得积分10
23秒前
cz完成签到,获得积分10
23秒前
酷波er应助Metakuro采纳,获得10
24秒前
荔枝完成签到,获得积分10
24秒前
wanci应助科研通管家采纳,获得10
24秒前
一石二鸟应助科研通管家采纳,获得10
24秒前
自信的子默完成签到,获得积分20
24秒前
打打应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
卓博完成签到,获得积分10
24秒前
华仔应助科研通管家采纳,获得10
25秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046