阳极
材料科学
锂(药物)
离子
电池(电)
合金
化学工程
电极
冶金
化学
热力学
内分泌学
工程类
物理化学
功率(物理)
有机化学
物理
医学
作者
Xinyang Yue,Yuxing Yao,Jing Zhang,Siyu Yang,Hao Wei,Zeheng Li,Cheng Tang,Yuanmao Chen,Chong Yan,Qiang Zhang
标识
DOI:10.1002/anie.202413926
摘要
Contact prelithiation is widely used for compensating the initial capacity loss of lithium‐ion batteries (LIBs). However, the low Li‐source utilization suffering from the deteriorated contact interfaces results in cycling degeneration. Herein, Li−Ag alloy‐based artificial electron channels (AECs) are established in Li source/graphite anode contact interfaces to promote Li‐source conversion. Due to the shielding effect of the Li−Ag alloy (50 at. % Li) on Li‐ion diffusion, the dry‐state corrosion of contact interfaces is restricted. The unblocked electronic conduction across the AEC‐involved interface not only facilitates the Li source conversion but also accelerates the prelithiation kinetics during the wet‐state process, resulting in an ultrahigh Li‐source utilization (90.7%). Thereby, implementing AEC‐assisted prelithiation in a LiNi0.5Co0.2Mn0.3O2 pouch cell yields a 35.8% increase in energy density and stable cycling over 600 cycles. This finding affords significant insights into the construction of an efficient prelithiation technology toward the development of high‐energy LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI