Mitigating off‐target effects of small RNAs: conventional approaches, network theory and artificial intelligence

计算机科学 人工智能 计算生物学 神经科学 生物
作者
Zoltán Bereczki,Bettina Benczik,Olivér M. Balogh,S. Marton,Eszter Puhl,Mátyás Pétervári,Máté Váczy‐Földi,Zsolt Tamás Papp,András Makkos,Kimberly Glass,Fabian Locquet,Gerhild Euler,Rainer Schulz,Péter Ferdinandy,Bence Ágg
出处
期刊:British Journal of Pharmacology [Wiley]
被引量:15
标识
DOI:10.1111/bph.17302
摘要

Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助大橙子采纳,获得10
1秒前
小帅完成签到,获得积分10
1秒前
man完成签到 ,获得积分10
2秒前
biofresh完成签到,获得积分10
4秒前
平凡完成签到,获得积分10
8秒前
9秒前
哈利波特完成签到,获得积分10
12秒前
菓小柒完成签到 ,获得积分10
12秒前
basil完成签到,获得积分10
13秒前
大橙子发布了新的文献求助10
13秒前
mammer应助超帅无色采纳,获得10
14秒前
helloworld完成签到,获得积分10
15秒前
海洋完成签到,获得积分10
15秒前
Hina完成签到,获得积分10
16秒前
ZH完成签到,获得积分10
19秒前
yyds完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
唯梦完成签到 ,获得积分10
23秒前
詹姆斯哈登完成签到,获得积分10
26秒前
李健应助名字不好起采纳,获得10
28秒前
万历完成签到,获得积分10
28秒前
28秒前
林卷卷完成签到,获得积分10
29秒前
大葱鸭发布了新的文献求助10
31秒前
32秒前
李健应助南山无梅落采纳,获得10
32秒前
36秒前
赘婿应助大橙子采纳,获得10
38秒前
45秒前
我是大学霸完成签到,获得积分10
46秒前
随风完成签到,获得积分0
46秒前
yi完成签到 ,获得积分10
47秒前
lin完成签到,获得积分10
48秒前
huahua完成签到 ,获得积分10
48秒前
大橙子发布了新的文献求助10
51秒前
小黑完成签到,获得积分10
54秒前
ZY完成签到 ,获得积分10
57秒前
阿士大夫完成签到,获得积分0
57秒前
chai完成签到,获得积分10
57秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022