Mitigating off‐target effects of small RNAs: conventional approaches, network theory and artificial intelligence

计算机科学 人工智能 计算生物学 神经科学 生物
作者
Zoltán Bereczki,Bettina Benczik,Olivér M. Balogh,S. Marton,Eszter Puhl,Mátyás Pétervári,Máté Váczy‐Földi,Zsolt Tamás Papp,András Makkos,Kimberly Glass,Fabian Locquet,Gerhild Euler,Rainer Schulz,Péter Ferdinandy,Bence Ágg
出处
期刊:British Journal of Pharmacology [Wiley]
被引量:15
标识
DOI:10.1111/bph.17302
摘要

Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助Zjin宇采纳,获得10
1秒前
1秒前
1秒前
NexusExplorer应助超级灰狼采纳,获得10
1秒前
2秒前
guo发布了新的文献求助10
2秒前
淡泊宁静完成签到,获得积分10
3秒前
852应助陈补天采纳,获得10
3秒前
开心完成签到 ,获得积分10
3秒前
alisa发布了新的文献求助10
4秒前
激昂的背包完成签到 ,获得积分10
4秒前
堇年完成签到,获得积分20
4秒前
HoHo完成签到 ,获得积分10
4秒前
甜酒发布了新的文献求助10
4秒前
karate09judges完成签到 ,获得积分10
4秒前
在水一方应助djbj2022采纳,获得10
5秒前
5秒前
moonlight完成签到,获得积分10
6秒前
无聊的寻梅完成签到,获得积分10
6秒前
Raymond完成签到,获得积分0
6秒前
李可汗发布了新的文献求助10
6秒前
7秒前
远荒发布了新的文献求助10
8秒前
不过尔尔完成签到 ,获得积分10
9秒前
9秒前
咿呀咿呀哟完成签到,获得积分10
9秒前
betty2009完成签到,获得积分10
9秒前
米半完成签到,获得积分10
10秒前
10秒前
E0702完成签到,获得积分10
11秒前
yu完成签到 ,获得积分10
11秒前
感动傀斗完成签到,获得积分10
11秒前
lcxszsd完成签到 ,获得积分10
12秒前
聪明的语风完成签到,获得积分10
13秒前
耍酷寻双完成签到 ,获得积分10
13秒前
13秒前
陈补天发布了新的文献求助10
14秒前
14秒前
drdrde4u发布了新的文献求助10
14秒前
大马猴完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968934
求助须知:如何正确求助?哪些是违规求助? 3513835
关于积分的说明 11170238
捐赠科研通 3249167
什么是DOI,文献DOI怎么找? 1794650
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755