Enhancing prediction of elemental composition through machine learning decision tree models for biomass gasification optimization

生物量(生态学) 决策树 作文(语言) 树(集合论) 计算机科学 工艺工程 机器学习 人工智能 数学 工程类 农学 数学分析 语言学 哲学 生物
作者
Peng Xu,Jidong Zhang
出处
期刊:Chemical Product and Process Modeling [De Gruyter]
标识
DOI:10.1515/cppm-2024-0011
摘要

Abstract The worldwide transition to cleaner, sustainable energy sources, prompted by population growth and industrialization, responds to uncertain fossil fuel prices and environmental concerns, highlighting the substantial benefits of renewable energy in reducing greenhouse gas emissions and addressing climate change. Derived from non-fossilized organic materials, biomass emerges as a significant and sustainable contributor to renewable energy. Its diverse nature is complemented by a range of conversion technologies, encompassing combustion, pyrolysis, gasification, and liquefaction, providing versatile avenues for biomass energy transformation. Gasification, the transformative process of converting organic matter into combustible gases under controlled oxygen levels, is accomplished through direct oxygen supply or pyrolysis. This method yields a dependable gaseous fuel versatile for heating, industrial processes, power generation, and liquid fuel production. Machine learning employs advanced statistical techniques for modeling across diverse industries, showcasing particular efficacy in optimizing thermochemical processes by precisely identifying the optimal operating conditions required for achieving desired product properties. These models utilize proximate biomass data to predict the elemental compositions of N 2 and H 2 . Assessment of both single and two hybrid models indicated that the introduced optimizers significantly enhanced the estimation of N 2 and H 2 when combined with Decision Tree (DT), with Decision Tree Coupled with Artificial Hummingbird Algorithm (DTAH) proving particularly effective. Notably, DTAH demonstrated outstanding performance with remarkable R 2 values of 0.990 for N 2 and 0.992 for H 2 . Additionally, the minimal Root Mean Square Error (RMSE) values of 1.291 and 1.550 for N 2 and H 2 predictions respectively underscore the precision of DTAH, establishing it as a suitable choice for practical real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
倾听阳光完成签到 ,获得积分10
3秒前
笨笨青筠完成签到 ,获得积分10
3秒前
怡然的复天完成签到,获得积分10
4秒前
GingerF应助昏睡的蟠桃采纳,获得200
6秒前
科研通AI6应助阿辉采纳,获得10
7秒前
13秒前
Brenda完成签到,获得积分10
17秒前
酸酸完成签到 ,获得积分10
18秒前
Tom完成签到,获得积分10
20秒前
Hello应助Siliang采纳,获得10
22秒前
酸酸关注了科研通微信公众号
23秒前
keyanlv完成签到,获得积分10
28秒前
子苓完成签到 ,获得积分10
28秒前
bing完成签到,获得积分10
29秒前
zxj完成签到,获得积分10
30秒前
hwl26完成签到,获得积分10
31秒前
SARON完成签到 ,获得积分10
34秒前
锥子完成签到,获得积分10
36秒前
路路完成签到 ,获得积分10
38秒前
陶军辉完成签到 ,获得积分10
39秒前
感动清炎完成签到,获得积分10
41秒前
41秒前
wanci应助科研通管家采纳,获得10
41秒前
pluto应助科研通管家采纳,获得10
41秒前
chrisio应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
852应助科研通管家采纳,获得10
41秒前
Clara应助科研通管家采纳,获得10
41秒前
子车茗应助科研通管家采纳,获得10
41秒前
pluto应助科研通管家采纳,获得10
42秒前
Tao应助科研通管家采纳,获得10
42秒前
BareBear应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
42秒前
ludong_0应助科研通管家采纳,获得10
42秒前
无极微光应助科研通管家采纳,获得20
42秒前
BareBear应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
42秒前
子车茗应助科研通管家采纳,获得10
42秒前
BareBear应助科研通管家采纳,获得10
42秒前
BareBear应助科研通管家采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498677
求助须知:如何正确求助?哪些是违规求助? 4595836
关于积分的说明 14450003
捐赠科研通 4528827
什么是DOI,文献DOI怎么找? 2481735
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438581