Enhancing prediction of elemental composition through machine learning decision tree models for biomass gasification optimization

生物量(生态学) 决策树 作文(语言) 树(集合论) 计算机科学 工艺工程 机器学习 人工智能 数学 工程类 农学 数学分析 语言学 哲学 生物
作者
Peng Xu,Jidong Zhang
出处
期刊:Chemical Product and Process Modeling [De Gruyter]
标识
DOI:10.1515/cppm-2024-0011
摘要

Abstract The worldwide transition to cleaner, sustainable energy sources, prompted by population growth and industrialization, responds to uncertain fossil fuel prices and environmental concerns, highlighting the substantial benefits of renewable energy in reducing greenhouse gas emissions and addressing climate change. Derived from non-fossilized organic materials, biomass emerges as a significant and sustainable contributor to renewable energy. Its diverse nature is complemented by a range of conversion technologies, encompassing combustion, pyrolysis, gasification, and liquefaction, providing versatile avenues for biomass energy transformation. Gasification, the transformative process of converting organic matter into combustible gases under controlled oxygen levels, is accomplished through direct oxygen supply or pyrolysis. This method yields a dependable gaseous fuel versatile for heating, industrial processes, power generation, and liquid fuel production. Machine learning employs advanced statistical techniques for modeling across diverse industries, showcasing particular efficacy in optimizing thermochemical processes by precisely identifying the optimal operating conditions required for achieving desired product properties. These models utilize proximate biomass data to predict the elemental compositions of N 2 and H 2 . Assessment of both single and two hybrid models indicated that the introduced optimizers significantly enhanced the estimation of N 2 and H 2 when combined with Decision Tree (DT), with Decision Tree Coupled with Artificial Hummingbird Algorithm (DTAH) proving particularly effective. Notably, DTAH demonstrated outstanding performance with remarkable R 2 values of 0.990 for N 2 and 0.992 for H 2 . Additionally, the minimal Root Mean Square Error (RMSE) values of 1.291 and 1.550 for N 2 and H 2 predictions respectively underscore the precision of DTAH, establishing it as a suitable choice for practical real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
777完成签到,获得积分10
2秒前
炙热的雨旋完成签到,获得积分10
2秒前
4秒前
5秒前
10秒前
12秒前
陌小石完成签到 ,获得积分0
12秒前
12秒前
星辰大海应助WWW采纳,获得10
13秒前
13秒前
13秒前
FashionBoy应助木南采纳,获得10
14秒前
樱书发布了新的文献求助10
15秒前
WWW发布了新的文献求助20
15秒前
叮当完成签到 ,获得积分10
16秒前
寻道图强应助安静柚子采纳,获得30
17秒前
简单发布了新的文献求助10
18秒前
jian发布了新的文献求助10
18秒前
19秒前
19秒前
小乖完成签到 ,获得积分10
19秒前
长情的沁完成签到,获得积分10
21秒前
21秒前
22秒前
香蕉诗蕊应助踏实凡阳采纳,获得10
22秒前
冷酷莫言发布了新的文献求助10
23秒前
星辰大海应助现代的手套采纳,获得10
23秒前
Jared应助凉白开采纳,获得10
24秒前
阿辉完成签到 ,获得积分10
25秒前
WWW发布了新的文献求助10
26秒前
zz发布了新的文献求助10
28秒前
木南发布了新的文献求助10
28秒前
29秒前
loyuanhao完成签到,获得积分20
29秒前
英勇的飞扬完成签到,获得积分10
30秒前
宋子虎完成签到 ,获得积分10
30秒前
30秒前
武愿完成签到,获得积分10
34秒前
34秒前
烟花应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560699
求助须知:如何正确求助?哪些是违规求助? 4646035
关于积分的说明 14677035
捐赠科研通 4587117
什么是DOI,文献DOI怎么找? 2516841
邀请新用户注册赠送积分活动 1490308
关于科研通互助平台的介绍 1461136