Enhancing prediction of elemental composition through machine learning decision tree models for biomass gasification optimization

生物量(生态学) 决策树 作文(语言) 树(集合论) 计算机科学 工艺工程 机器学习 人工智能 数学 工程类 农学 数学分析 语言学 哲学 生物
作者
Peng Xu,Jidong Zhang
出处
期刊:Chemical Product and Process Modeling [De Gruyter]
标识
DOI:10.1515/cppm-2024-0011
摘要

Abstract The worldwide transition to cleaner, sustainable energy sources, prompted by population growth and industrialization, responds to uncertain fossil fuel prices and environmental concerns, highlighting the substantial benefits of renewable energy in reducing greenhouse gas emissions and addressing climate change. Derived from non-fossilized organic materials, biomass emerges as a significant and sustainable contributor to renewable energy. Its diverse nature is complemented by a range of conversion technologies, encompassing combustion, pyrolysis, gasification, and liquefaction, providing versatile avenues for biomass energy transformation. Gasification, the transformative process of converting organic matter into combustible gases under controlled oxygen levels, is accomplished through direct oxygen supply or pyrolysis. This method yields a dependable gaseous fuel versatile for heating, industrial processes, power generation, and liquid fuel production. Machine learning employs advanced statistical techniques for modeling across diverse industries, showcasing particular efficacy in optimizing thermochemical processes by precisely identifying the optimal operating conditions required for achieving desired product properties. These models utilize proximate biomass data to predict the elemental compositions of N 2 and H 2 . Assessment of both single and two hybrid models indicated that the introduced optimizers significantly enhanced the estimation of N 2 and H 2 when combined with Decision Tree (DT), with Decision Tree Coupled with Artificial Hummingbird Algorithm (DTAH) proving particularly effective. Notably, DTAH demonstrated outstanding performance with remarkable R 2 values of 0.990 for N 2 and 0.992 for H 2 . Additionally, the minimal Root Mean Square Error (RMSE) values of 1.291 and 1.550 for N 2 and H 2 predictions respectively underscore the precision of DTAH, establishing it as a suitable choice for practical real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaochenxiaochen完成签到,获得积分10
刚刚
砰砰彭完成签到,获得积分10
刚刚
刚刚
lu完成签到 ,获得积分10
1秒前
pw完成签到 ,获得积分10
1秒前
cyy1226发布了新的文献求助10
1秒前
唠叨的夏烟完成签到 ,获得积分10
1秒前
wanci应助四月一日采纳,获得10
2秒前
Young发布了新的文献求助10
2秒前
有魅力的猫咪完成签到,获得积分10
2秒前
zwy完成签到,获得积分10
2秒前
无情的问枫完成签到 ,获得积分10
2秒前
LSY完成签到 ,获得积分10
3秒前
Lucas应助苏silence采纳,获得10
3秒前
友好雅山发布了新的文献求助10
3秒前
hushan53发布了新的文献求助10
3秒前
从容的完成签到 ,获得积分10
4秒前
云悠水澈完成签到,获得积分10
4秒前
顺利毕业完成签到,获得积分10
4秒前
炸鸡发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助20
4秒前
5秒前
Zz完成签到 ,获得积分10
5秒前
于林渤完成签到,获得积分20
5秒前
愚者先生完成签到 ,获得积分10
5秒前
狄百招完成签到,获得积分10
5秒前
5秒前
殷勤的紫槐应助咿呀咿呀哟采纳,获得200
5秒前
悦耳短靴完成签到 ,获得积分10
5秒前
6秒前
HTY完成签到 ,获得积分10
6秒前
优秀不愁发布了新的文献求助10
6秒前
舒心发布了新的文献求助10
6秒前
小白完成签到,获得积分10
6秒前
鹿呦完成签到 ,获得积分10
6秒前
JamesPei应助会爬树的苹果采纳,获得10
6秒前
zhuling发布了新的文献求助10
7秒前
番茄炒西红柿完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997