Enhancing prediction of elemental composition through machine learning decision tree models for biomass gasification optimization

生物量(生态学) 决策树 作文(语言) 树(集合论) 计算机科学 工艺工程 机器学习 人工智能 数学 工程类 农学 数学分析 语言学 哲学 生物
作者
Peng Xu,Jidong Zhang
出处
期刊:Chemical Product and Process Modeling [De Gruyter]
标识
DOI:10.1515/cppm-2024-0011
摘要

Abstract The worldwide transition to cleaner, sustainable energy sources, prompted by population growth and industrialization, responds to uncertain fossil fuel prices and environmental concerns, highlighting the substantial benefits of renewable energy in reducing greenhouse gas emissions and addressing climate change. Derived from non-fossilized organic materials, biomass emerges as a significant and sustainable contributor to renewable energy. Its diverse nature is complemented by a range of conversion technologies, encompassing combustion, pyrolysis, gasification, and liquefaction, providing versatile avenues for biomass energy transformation. Gasification, the transformative process of converting organic matter into combustible gases under controlled oxygen levels, is accomplished through direct oxygen supply or pyrolysis. This method yields a dependable gaseous fuel versatile for heating, industrial processes, power generation, and liquid fuel production. Machine learning employs advanced statistical techniques for modeling across diverse industries, showcasing particular efficacy in optimizing thermochemical processes by precisely identifying the optimal operating conditions required for achieving desired product properties. These models utilize proximate biomass data to predict the elemental compositions of N 2 and H 2 . Assessment of both single and two hybrid models indicated that the introduced optimizers significantly enhanced the estimation of N 2 and H 2 when combined with Decision Tree (DT), with Decision Tree Coupled with Artificial Hummingbird Algorithm (DTAH) proving particularly effective. Notably, DTAH demonstrated outstanding performance with remarkable R 2 values of 0.990 for N 2 and 0.992 for H 2 . Additionally, the minimal Root Mean Square Error (RMSE) values of 1.291 and 1.550 for N 2 and H 2 predictions respectively underscore the precision of DTAH, establishing it as a suitable choice for practical real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shan发布了新的文献求助20
刚刚
嘟嘟噜完成签到,获得积分10
1秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得50
4秒前
Theprisoners应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
呜呼完成签到,获得积分10
5秒前
pipipeekapoo应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
7秒前
情怀应助Rain采纳,获得10
10秒前
桐桐应助善良的从霜采纳,获得10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619