Enhancing prediction of elemental composition through machine learning decision tree models for biomass gasification optimization

生物量(生态学) 决策树 作文(语言) 树(集合论) 计算机科学 工艺工程 机器学习 人工智能 数学 工程类 农学 数学分析 语言学 哲学 生物
作者
Peng Xu,Jidong Zhang
出处
期刊:Chemical Product and Process Modeling [De Gruyter]
标识
DOI:10.1515/cppm-2024-0011
摘要

Abstract The worldwide transition to cleaner, sustainable energy sources, prompted by population growth and industrialization, responds to uncertain fossil fuel prices and environmental concerns, highlighting the substantial benefits of renewable energy in reducing greenhouse gas emissions and addressing climate change. Derived from non-fossilized organic materials, biomass emerges as a significant and sustainable contributor to renewable energy. Its diverse nature is complemented by a range of conversion technologies, encompassing combustion, pyrolysis, gasification, and liquefaction, providing versatile avenues for biomass energy transformation. Gasification, the transformative process of converting organic matter into combustible gases under controlled oxygen levels, is accomplished through direct oxygen supply or pyrolysis. This method yields a dependable gaseous fuel versatile for heating, industrial processes, power generation, and liquid fuel production. Machine learning employs advanced statistical techniques for modeling across diverse industries, showcasing particular efficacy in optimizing thermochemical processes by precisely identifying the optimal operating conditions required for achieving desired product properties. These models utilize proximate biomass data to predict the elemental compositions of N 2 and H 2 . Assessment of both single and two hybrid models indicated that the introduced optimizers significantly enhanced the estimation of N 2 and H 2 when combined with Decision Tree (DT), with Decision Tree Coupled with Artificial Hummingbird Algorithm (DTAH) proving particularly effective. Notably, DTAH demonstrated outstanding performance with remarkable R 2 values of 0.990 for N 2 and 0.992 for H 2 . Additionally, the minimal Root Mean Square Error (RMSE) values of 1.291 and 1.550 for N 2 and H 2 predictions respectively underscore the precision of DTAH, establishing it as a suitable choice for practical real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮荠完成签到,获得积分10
刚刚
岸边渔客发布了新的文献求助10
刚刚
然来溪完成签到 ,获得积分10
刚刚
停婷完成签到,获得积分10
刚刚
CodeCraft应助tywznba采纳,获得10
刚刚
小肆完成签到 ,获得积分10
刚刚
汪金完成签到,获得积分10
刚刚
1秒前
黄诺雪完成签到,获得积分10
1秒前
1秒前
顺利葵阴发布了新的文献求助10
1秒前
英姑应助善良书蝶采纳,获得10
1秒前
云端完成签到 ,获得积分10
1秒前
bkagyin应助ABCDE采纳,获得30
1秒前
君莫笑完成签到,获得积分10
1秒前
1秒前
沈颖完成签到,获得积分10
2秒前
完美世界应助苏言止采纳,获得10
2秒前
3秒前
Justice完成签到,获得积分10
3秒前
核动力驴应助你好采纳,获得10
3秒前
残雪完成签到 ,获得积分10
3秒前
nininidoc完成签到,获得积分10
4秒前
科研通AI6应助kolico采纳,获得10
4秒前
给好评发布了新的文献求助10
4秒前
无限的绮晴完成签到,获得积分10
5秒前
鑫鑫完成签到,获得积分10
5秒前
sszz发布了新的文献求助10
6秒前
星辰大海应助张雯雯采纳,获得10
6秒前
qq发布了新的文献求助10
6秒前
xiaaa发布了新的文献求助10
6秒前
orixero应助科研小白采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
小马甲应助王启采纳,获得10
7秒前
tgene发布了新的文献求助10
7秒前
三七四十三完成签到,获得积分10
7秒前
核动力驴应助娓鸢采纳,获得10
7秒前
稳重飞飞完成签到,获得积分10
8秒前
豆包完成签到,获得积分10
8秒前
阿喔完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271