Enhancing prediction of elemental composition through machine learning decision tree models for biomass gasification optimization

生物量(生态学) 决策树 作文(语言) 树(集合论) 计算机科学 工艺工程 机器学习 人工智能 数学 工程类 农学 数学分析 语言学 哲学 生物
作者
Peng Xu,Jidong Zhang
出处
期刊:Chemical Product and Process Modeling [De Gruyter]
标识
DOI:10.1515/cppm-2024-0011
摘要

Abstract The worldwide transition to cleaner, sustainable energy sources, prompted by population growth and industrialization, responds to uncertain fossil fuel prices and environmental concerns, highlighting the substantial benefits of renewable energy in reducing greenhouse gas emissions and addressing climate change. Derived from non-fossilized organic materials, biomass emerges as a significant and sustainable contributor to renewable energy. Its diverse nature is complemented by a range of conversion technologies, encompassing combustion, pyrolysis, gasification, and liquefaction, providing versatile avenues for biomass energy transformation. Gasification, the transformative process of converting organic matter into combustible gases under controlled oxygen levels, is accomplished through direct oxygen supply or pyrolysis. This method yields a dependable gaseous fuel versatile for heating, industrial processes, power generation, and liquid fuel production. Machine learning employs advanced statistical techniques for modeling across diverse industries, showcasing particular efficacy in optimizing thermochemical processes by precisely identifying the optimal operating conditions required for achieving desired product properties. These models utilize proximate biomass data to predict the elemental compositions of N 2 and H 2 . Assessment of both single and two hybrid models indicated that the introduced optimizers significantly enhanced the estimation of N 2 and H 2 when combined with Decision Tree (DT), with Decision Tree Coupled with Artificial Hummingbird Algorithm (DTAH) proving particularly effective. Notably, DTAH demonstrated outstanding performance with remarkable R 2 values of 0.990 for N 2 and 0.992 for H 2 . Additionally, the minimal Root Mean Square Error (RMSE) values of 1.291 and 1.550 for N 2 and H 2 predictions respectively underscore the precision of DTAH, establishing it as a suitable choice for practical real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞的螃蟹完成签到,获得积分10
1秒前
2秒前
艳艳子发布了新的文献求助10
3秒前
歪歪扣叉给歪歪扣叉的求助进行了留言
6秒前
1571424272完成签到,获得积分10
8秒前
8秒前
LTDJYYD完成签到,获得积分10
8秒前
Alice完成签到,获得积分10
8秒前
科研通AI6应助艳艳子采纳,获得10
9秒前
朱光辉发布了新的文献求助10
9秒前
10秒前
1_1完成签到,获得积分10
10秒前
柘苓完成签到 ,获得积分10
11秒前
WZzz完成签到 ,获得积分10
12秒前
可爱的函函应助老实善愁采纳,获得10
12秒前
冷知识发布了新的文献求助50
14秒前
JZW发布了新的文献求助10
14秒前
15秒前
花花完成签到,获得积分10
17秒前
东晓完成签到,获得积分10
19秒前
19秒前
学学学完成签到 ,获得积分10
19秒前
李欣完成签到,获得积分10
19秒前
Arthur完成签到,获得积分10
20秒前
20秒前
lgj666发布了新的文献求助10
22秒前
开心完成签到 ,获得积分10
22秒前
24秒前
小齐爱科研完成签到,获得积分10
24秒前
25秒前
25秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
romy完成签到,获得积分10
29秒前
友芸完成签到 ,获得积分10
29秒前
shanshan完成签到 ,获得积分10
30秒前
李欣发布了新的文献求助10
30秒前
dasheng_发布了新的文献求助10
31秒前
31秒前
Rimbaud完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539728
求助须知:如何正确求助?哪些是违规求助? 4626494
关于积分的说明 14599495
捐赠科研通 4567353
什么是DOI,文献DOI怎么找? 2504016
邀请新用户注册赠送积分活动 1481719
关于科研通互助平台的介绍 1453352