Enhancing prediction of elemental composition through machine learning decision tree models for biomass gasification optimization

生物量(生态学) 决策树 作文(语言) 树(集合论) 计算机科学 工艺工程 机器学习 人工智能 数学 工程类 农学 数学分析 语言学 哲学 生物
作者
Peng Xu,Jidong Zhang
出处
期刊:Chemical Product and Process Modeling [De Gruyter]
标识
DOI:10.1515/cppm-2024-0011
摘要

Abstract The worldwide transition to cleaner, sustainable energy sources, prompted by population growth and industrialization, responds to uncertain fossil fuel prices and environmental concerns, highlighting the substantial benefits of renewable energy in reducing greenhouse gas emissions and addressing climate change. Derived from non-fossilized organic materials, biomass emerges as a significant and sustainable contributor to renewable energy. Its diverse nature is complemented by a range of conversion technologies, encompassing combustion, pyrolysis, gasification, and liquefaction, providing versatile avenues for biomass energy transformation. Gasification, the transformative process of converting organic matter into combustible gases under controlled oxygen levels, is accomplished through direct oxygen supply or pyrolysis. This method yields a dependable gaseous fuel versatile for heating, industrial processes, power generation, and liquid fuel production. Machine learning employs advanced statistical techniques for modeling across diverse industries, showcasing particular efficacy in optimizing thermochemical processes by precisely identifying the optimal operating conditions required for achieving desired product properties. These models utilize proximate biomass data to predict the elemental compositions of N 2 and H 2 . Assessment of both single and two hybrid models indicated that the introduced optimizers significantly enhanced the estimation of N 2 and H 2 when combined with Decision Tree (DT), with Decision Tree Coupled with Artificial Hummingbird Algorithm (DTAH) proving particularly effective. Notably, DTAH demonstrated outstanding performance with remarkable R 2 values of 0.990 for N 2 and 0.992 for H 2 . Additionally, the minimal Root Mean Square Error (RMSE) values of 1.291 and 1.550 for N 2 and H 2 predictions respectively underscore the precision of DTAH, establishing it as a suitable choice for practical real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高兴中心完成签到,获得积分10
1秒前
PHY完成签到,获得积分10
1秒前
Maxvail发布了新的文献求助10
1秒前
2以李发布了新的文献求助10
1秒前
丸丸完成签到,获得积分10
2秒前
鹿呦完成签到 ,获得积分10
2秒前
明亮的嚣完成签到 ,获得积分20
2秒前
希望天下0贩的0应助yanting采纳,获得10
2秒前
很酷的妞子完成签到,获得积分10
2秒前
aifeeling完成签到,获得积分10
3秒前
听风轻语完成签到,获得积分10
3秒前
dongjingbutaire完成签到,获得积分10
3秒前
狄语蕊完成签到,获得积分10
3秒前
3秒前
科目三应助鲈鱼采纳,获得10
4秒前
4秒前
5秒前
孔鹏飞发布了新的文献求助10
5秒前
生动的战斗机完成签到,获得积分10
5秒前
感动芷珊发布了新的文献求助10
6秒前
lwz完成签到,获得积分10
7秒前
坦率的文龙完成签到,获得积分10
7秒前
孙元发布了新的文献求助10
7秒前
8秒前
卷心菜完成签到 ,获得积分10
8秒前
bkagyin应助chencchen采纳,获得10
8秒前
Alice完成签到,获得积分20
8秒前
研友_西门孤晴完成签到,获得积分0
8秒前
一个果儿应助俭朴冰姬采纳,获得30
9秒前
舒适香露完成签到,获得积分10
9秒前
所所应助Ll采纳,获得10
9秒前
迟早是个小富婆关注了科研通微信公众号
9秒前
不冬眠发布了新的文献求助10
10秒前
Criminology34应助骆驼翔子采纳,获得10
10秒前
充电宝应助马晓玲采纳,获得10
10秒前
10秒前
11秒前
岭下移风革俗完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612427
求助须知:如何正确求助?哪些是违规求助? 4696552
关于积分的说明 14893385
捐赠科研通 4733235
什么是DOI,文献DOI怎么找? 2546401
邀请新用户注册赠送积分活动 1510561
关于科研通互助平台的介绍 1473423