Enhancing prediction of elemental composition through machine learning decision tree models for biomass gasification optimization

生物量(生态学) 决策树 作文(语言) 树(集合论) 计算机科学 工艺工程 机器学习 人工智能 数学 工程类 农学 语言学 生物 数学分析 哲学
作者
Peng Xu,Jidong Zhang
出处
期刊:Chemical Product and Process Modeling [De Gruyter]
标识
DOI:10.1515/cppm-2024-0011
摘要

Abstract The worldwide transition to cleaner, sustainable energy sources, prompted by population growth and industrialization, responds to uncertain fossil fuel prices and environmental concerns, highlighting the substantial benefits of renewable energy in reducing greenhouse gas emissions and addressing climate change. Derived from non-fossilized organic materials, biomass emerges as a significant and sustainable contributor to renewable energy. Its diverse nature is complemented by a range of conversion technologies, encompassing combustion, pyrolysis, gasification, and liquefaction, providing versatile avenues for biomass energy transformation. Gasification, the transformative process of converting organic matter into combustible gases under controlled oxygen levels, is accomplished through direct oxygen supply or pyrolysis. This method yields a dependable gaseous fuel versatile for heating, industrial processes, power generation, and liquid fuel production. Machine learning employs advanced statistical techniques for modeling across diverse industries, showcasing particular efficacy in optimizing thermochemical processes by precisely identifying the optimal operating conditions required for achieving desired product properties. These models utilize proximate biomass data to predict the elemental compositions of N 2 and H 2 . Assessment of both single and two hybrid models indicated that the introduced optimizers significantly enhanced the estimation of N 2 and H 2 when combined with Decision Tree (DT), with Decision Tree Coupled with Artificial Hummingbird Algorithm (DTAH) proving particularly effective. Notably, DTAH demonstrated outstanding performance with remarkable R 2 values of 0.990 for N 2 and 0.992 for H 2 . Additionally, the minimal Root Mean Square Error (RMSE) values of 1.291 and 1.550 for N 2 and H 2 predictions respectively underscore the precision of DTAH, establishing it as a suitable choice for practical real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
灵巧夏青完成签到,获得积分10
1秒前
lplp发布了新的文献求助30
3秒前
研友_EZ1aNZ发布了新的文献求助10
4秒前
5秒前
孤独靖柏完成签到,获得积分10
8秒前
8秒前
萌宝发布了新的文献求助10
8秒前
wy发布了新的文献求助10
9秒前
pengx完成签到,获得积分10
9秒前
10秒前
狂野忆山发布了新的文献求助10
10秒前
湘之灵若完成签到 ,获得积分10
11秒前
wangdake发布了新的文献求助10
12秒前
12秒前
烟花应助张必雨采纳,获得10
13秒前
煜钧发布了新的文献求助10
13秒前
wu完成签到,获得积分10
14秒前
15秒前
bkagyin应助萌宝采纳,获得10
15秒前
wu应助GT采纳,获得10
15秒前
17秒前
Lucas应助感动清炎采纳,获得10
17秒前
18秒前
18秒前
小海完成签到 ,获得积分10
19秒前
丁茸茸发布了新的文献求助30
20秒前
Billy应助单身的钧采纳,获得10
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
晓薇发布了新的文献求助10
22秒前
gyd发布了新的文献求助80
22秒前
paltahun发布了新的文献求助10
22秒前
kyt完成签到,获得积分10
22秒前
今后应助酷酷采纳,获得10
23秒前
leo发布了新的文献求助10
23秒前
HFS完成签到,获得积分10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264055
求助须知:如何正确求助?哪些是违规求助? 2904291
关于积分的说明 8329474
捐赠科研通 2574503
什么是DOI,文献DOI怎么找? 1399136
科研通“疑难数据库(出版商)”最低求助积分说明 654433
邀请新用户注册赠送积分活动 633095