Investigating the mechanical properties of composites containing exfoliated graphite/epoxy sensors: Experimental testing and simulation

材料科学 复合材料 环氧树脂 石墨
作者
ARIANNA L. VERBOSKY,Biniam Tamrea Gebretsadik,QUINN T. REED,H. E. Cho,Ephraim Zegeye
出处
期刊:Journal of Composite Materials [SAGE]
卷期号:58 (30): 3157-3170
标识
DOI:10.1177/00219983241289490
摘要

One approach to structural health monitoring (SHM) involves embedding sensors within a composite material. However, the integration of these sensors can potentially introduce flaws that might affect the composite’s mechanical properties. This research aims to explore the impact of embedding exfoliated graphite (EG)/epoxy sensors on the mechanical characteristics of composite systems through laboratory experiments and numerical simulations. Sensor strips composed of varying volume fractions of EG/epoxy were fabricated. Tensile test specimens were prepared by embedding these sensors in the epoxy matrix oriented both lengthwise and widthwise. Baseline specimens of EG/epoxy without sensors were also created for comparison. Tensile tests were performed on the samples to evaluate the effects of the embedded sensors on the composite’s elastic modulus and tensile strength. The results indicated a slight improvement in both elastic modulus and tensile strength with the introduction of EG. Crucially, the orientation of the sensors within the samples had a significant impact on the composite’s mechanical properties. Samples with widthwise-aligned sensors showed reduced tensile strength due to delamination along the sensor edges. Finite element simulations using a viscoelastic model based on the experimental data were conducted to analyze the effect of sensor alignment on mechanical properties. The findings revealed that a grid pattern alignment of sensors significantly enhanced mechanical performance compared to lengthwise or widthwise alignment, particularly at 0.1% and 0.3% EG volume fractions, highlighting the effectiveness of a grid pattern for embedding sensors in SHM applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌OUT曼完成签到,获得积分10
刚刚
luuuuuing发布了新的文献求助30
1秒前
spring完成签到 ,获得积分10
1秒前
ding应助白衣未央采纳,获得10
1秒前
bkagyin应助饱满小兔子采纳,获得30
1秒前
吨吨喝水发布了新的文献求助10
2秒前
bkagyin应助细心映寒采纳,获得10
2秒前
灬乔发布了新的文献求助30
2秒前
2秒前
2秒前
西西的瓜皮皮完成签到,获得积分20
3秒前
3秒前
善良友安完成签到,获得积分10
4秒前
研友_VZG7GZ应助Xxaaa采纳,获得10
5秒前
6秒前
6秒前
6秒前
段段完成签到,获得积分10
6秒前
Dddd发布了新的文献求助10
7秒前
hahah发布了新的文献求助10
8秒前
yep完成签到,获得积分10
8秒前
gguc发布了新的文献求助10
8秒前
大个应助yyy采纳,获得10
9秒前
你爹完成签到,获得积分10
9秒前
鳗鱼鞋垫完成签到 ,获得积分10
9秒前
dong发布了新的文献求助30
9秒前
10秒前
Lin发布了新的文献求助10
10秒前
Ll发布了新的文献求助50
10秒前
11秒前
晚风发布了新的文献求助10
11秒前
zjuroc发布了新的文献求助20
12秒前
坦率的松发布了新的文献求助10
12秒前
xiaokai完成签到,获得积分10
12秒前
12秒前
12秒前
Czy完成签到,获得积分10
12秒前
13秒前
小满完成签到,获得积分10
13秒前
文忉嫣完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762