Investigating the mechanical properties of composites containing exfoliated graphite/epoxy sensors: Experimental testing and simulation

材料科学 复合材料 环氧树脂 石墨
作者
ARIANNA L. VERBOSKY,Biniam Tamrea Gebretsadik,QUINN T. REED,H. E. Cho,Ephraim Zegeye
出处
期刊:Journal of Composite Materials [SAGE]
卷期号:58 (30): 3157-3170
标识
DOI:10.1177/00219983241289490
摘要

One approach to structural health monitoring (SHM) involves embedding sensors within a composite material. However, the integration of these sensors can potentially introduce flaws that might affect the composite’s mechanical properties. This research aims to explore the impact of embedding exfoliated graphite (EG)/epoxy sensors on the mechanical characteristics of composite systems through laboratory experiments and numerical simulations. Sensor strips composed of varying volume fractions of EG/epoxy were fabricated. Tensile test specimens were prepared by embedding these sensors in the epoxy matrix oriented both lengthwise and widthwise. Baseline specimens of EG/epoxy without sensors were also created for comparison. Tensile tests were performed on the samples to evaluate the effects of the embedded sensors on the composite’s elastic modulus and tensile strength. The results indicated a slight improvement in both elastic modulus and tensile strength with the introduction of EG. Crucially, the orientation of the sensors within the samples had a significant impact on the composite’s mechanical properties. Samples with widthwise-aligned sensors showed reduced tensile strength due to delamination along the sensor edges. Finite element simulations using a viscoelastic model based on the experimental data were conducted to analyze the effect of sensor alignment on mechanical properties. The findings revealed that a grid pattern alignment of sensors significantly enhanced mechanical performance compared to lengthwise or widthwise alignment, particularly at 0.1% and 0.3% EG volume fractions, highlighting the effectiveness of a grid pattern for embedding sensors in SHM applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Phaladius完成签到 ,获得积分10
1秒前
1秒前
2秒前
烟花应助石龙子采纳,获得10
2秒前
rp完成签到,获得积分10
3秒前
6秒前
小蘑菇应助迷路的翠容采纳,获得80
8秒前
8秒前
暗夜无痕应助REXT采纳,获得30
9秒前
10秒前
10秒前
不吃芹菜完成签到,获得积分10
13秒前
Masanao应助bole采纳,获得10
14秒前
15秒前
道明嗣发布了新的文献求助10
16秒前
17秒前
momo完成签到 ,获得积分10
17秒前
ding应助寻123采纳,获得10
18秒前
18秒前
19秒前
完美世界应助lv采纳,获得10
19秒前
半江发布了新的文献求助10
21秒前
弓雷雷完成签到,获得积分10
21秒前
石龙子发布了新的文献求助10
23秒前
24秒前
24秒前
27秒前
28秒前
28秒前
曾经若枫完成签到,获得积分10
28秒前
南小琴发布了新的文献求助10
29秒前
寻123发布了新的文献求助10
29秒前
Cathy完成签到,获得积分10
29秒前
Iris完成签到,获得积分10
30秒前
果实发布了新的文献求助10
31秒前
jinxuan发布了新的文献求助10
32秒前
cocolu应助半江采纳,获得10
32秒前
脑洞疼应助白鸽鸽采纳,获得10
33秒前
cmuren99完成签到,获得积分10
35秒前
科研通AI2S应助bole采纳,获得10
35秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329501
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594396
捐赠科研通 2637597
什么是DOI,文献DOI怎么找? 1443667
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656220