Investigating the mechanical properties of composites containing exfoliated graphite/epoxy sensors: Experimental testing and simulation

材料科学 复合材料 环氧树脂 石墨
作者
ARIANNA L. VERBOSKY,Biniam Tamrea Gebretsadik,QUINN T. REED,H. E. Cho,Ephraim Zegeye
出处
期刊:Journal of Composite Materials [SAGE Publishing]
卷期号:58 (30): 3157-3170
标识
DOI:10.1177/00219983241289490
摘要

One approach to structural health monitoring (SHM) involves embedding sensors within a composite material. However, the integration of these sensors can potentially introduce flaws that might affect the composite’s mechanical properties. This research aims to explore the impact of embedding exfoliated graphite (EG)/epoxy sensors on the mechanical characteristics of composite systems through laboratory experiments and numerical simulations. Sensor strips composed of varying volume fractions of EG/epoxy were fabricated. Tensile test specimens were prepared by embedding these sensors in the epoxy matrix oriented both lengthwise and widthwise. Baseline specimens of EG/epoxy without sensors were also created for comparison. Tensile tests were performed on the samples to evaluate the effects of the embedded sensors on the composite’s elastic modulus and tensile strength. The results indicated a slight improvement in both elastic modulus and tensile strength with the introduction of EG. Crucially, the orientation of the sensors within the samples had a significant impact on the composite’s mechanical properties. Samples with widthwise-aligned sensors showed reduced tensile strength due to delamination along the sensor edges. Finite element simulations using a viscoelastic model based on the experimental data were conducted to analyze the effect of sensor alignment on mechanical properties. The findings revealed that a grid pattern alignment of sensors significantly enhanced mechanical performance compared to lengthwise or widthwise alignment, particularly at 0.1% and 0.3% EG volume fractions, highlighting the effectiveness of a grid pattern for embedding sensors in SHM applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彩虹大侠完成签到,获得积分10
刚刚
拼搏诗翠完成签到 ,获得积分10
1秒前
1秒前
火星上昊焱完成签到 ,获得积分10
2秒前
garden发布了新的文献求助10
3秒前
3秒前
我爱学习完成签到,获得积分10
3秒前
panpanliumin完成签到,获得积分0
4秒前
4秒前
细心香烟完成签到 ,获得积分10
5秒前
5秒前
wlscj完成签到,获得积分10
5秒前
华仔应助大意的豌豆采纳,获得10
5秒前
6秒前
6秒前
隐形曼青应助健忘芹采纳,获得10
6秒前
小马甲应助拼搏的无颜采纳,获得10
6秒前
7秒前
garden完成签到,获得积分10
7秒前
peace发布了新的文献求助10
9秒前
欣慰的小甜瓜完成签到 ,获得积分10
9秒前
10秒前
zsp发布了新的文献求助10
10秒前
zlc发布了新的文献求助10
10秒前
11秒前
瞿qks完成签到,获得积分10
13秒前
14秒前
拼搏的无颜完成签到,获得积分10
14秒前
肖遥发布了新的文献求助10
14秒前
Raven应助咩啊咩吖采纳,获得10
14秒前
15秒前
有钱发布了新的文献求助10
16秒前
BiuBiu怪完成签到,获得积分10
16秒前
16秒前
我是老大应助文闵采纳,获得50
18秒前
18秒前
小艾发布了新的文献求助10
18秒前
19秒前
WTaMi发布了新的文献求助10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544