Machine learning-guided multi-site combinatorial mutagenesis enhances the thermostability of pectin lyase

热稳定性 突变 定向进化 蛋白质工程 化学 序列空间 组合方法 生物化学 计算生物学 组合化学 生物 数学 基因 突变体 组合数学 纯数学 巴拿赫空间
作者
Zhihui Zhang,Zhixuan Li,Manli Yang,Fengguang Zhao,Shuangyan Han
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:277: 134530-134530 被引量:2
标识
DOI:10.1016/j.ijbiomac.2024.134530
摘要

Enhancing the thermostability of enzymes is crucial for industrial applications. Methods such as directed evolution are often limited by the huge sequence space and combinatorial explosion, making it difficult to obtain optimal mutants. In recent years, machine learning (ML)-guided protein engineering has become an attractive tool because of its ability to comprehensively explore the sequence space of enzymes and discover superior mutants. This study employed ML to perform combinatorial mutation design on the pectin lyase PMGL-Ba from Bacillus licheniformis, aiming to improve its thermostability. First, 18 single-point mutants with enhanced thermostability were identified through semi-rational design. Subsequently, the initial library containing a small number of low-order mutants was utilized to construct an ML model to explore the combinatorial sequence space (theoretically 196,608 mutants) of single-point mutants. The results showed that the ML-predicted second library was successfully enriched with highly thermostable combinatorial mutants. After one iteration of learning, the best-performing combinatorial mutant in the third library, P36, showed a 67-fold and 39-fold increase in half-life at 75 °C and 80 °C, respectively, as well as a 2.1-fold increase in activity. Structural analysis and molecular dynamics simulations provided insights into the improved performance of the engineered enzyme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助紧张的寒梦采纳,获得10
刚刚
1秒前
畜牧笑笑完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
尊敬吐司完成签到,获得积分10
2秒前
2秒前
3秒前
gaoyi12356完成签到,获得积分10
3秒前
wanci应助醉熏的飞薇采纳,获得10
3秒前
木木应助可可采纳,获得10
3秒前
烟花应助唠叨的以柳采纳,获得10
3秒前
谨慎初曼给谨慎初曼的求助进行了留言
4秒前
碳14发布了新的文献求助10
4秒前
5秒前
6秒前
xelloss发布了新的文献求助10
7秒前
丰富钢铁侠完成签到,获得积分20
7秒前
7秒前
外向宛菡发布了新的文献求助10
7秒前
7秒前
Phebe发布了新的文献求助10
8秒前
wy.he应助高兴的海亦采纳,获得10
8秒前
研友_Y59785应助高兴的海亦采纳,获得10
8秒前
ZGZ123应助高兴的海亦采纳,获得10
8秒前
8秒前
英姑应助高兴的海亦采纳,获得10
8秒前
8秒前
所所应助高兴的海亦采纳,获得10
8秒前
ED应助高兴的海亦采纳,获得10
8秒前
小二郎应助高兴的海亦采纳,获得30
8秒前
海东来应助高兴的海亦采纳,获得30
8秒前
8秒前
卡卡西应助高兴的海亦采纳,获得30
9秒前
海东来应助高兴的海亦采纳,获得30
9秒前
MchemG应助lf采纳,获得10
9秒前
satan9完成签到,获得积分10
10秒前
10秒前
nz关闭了nz文献求助
10秒前
10秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987