亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two-stage algorithm for automatic repair of pavement cracks

阶段(地层学) 算法 计算机科学 法律工程学 地质学 工程类 古生物学
作者
Jing Yu,Jiawei Guo,Qi Zhang,Lining Xing,Songtao Lv
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
标识
DOI:10.1108/ecam-06-2024-0765
摘要

Purpose To develop an automated system for identifying and repairing cracks in asphalt pavements, addressing the urgent need for efficient pavement maintenance solutions amidst increasing workloads and decreasing budgets. Design/methodology/approach The research was conducted in two main stages: Crack identification: Utilizing the U-Net deep learning model for pixel-level segmentation to identify pavement cracks, followed by morphological operations such as thinning and spur removal to refine the crack trajectories. Automated crack repair path planning: Developing an enhanced hybrid ant colony greedy algorithm (EAC-GA), which integrates the ant colony (AC) algorithm, greedy algorithm (GA) and three local enhancement strategies – PointsExchange, Cracks2OPT and Nearby Cracks 2OPT – to plan the most efficient repair paths with minimal redundant distance. Findings The EAC-GA demonstrated significant advantages in solution quality compared to the GA, the traditional AC and the AC-GA. Experimental validation on repair areas with varying numbers of cracks (16, 26 and 36) confirmed the effectiveness and scalability of the proposed method. Originality/value The originality of this research lies in the application of advanced deep learning and optimization algorithms to the specific problem of pavement crack repair. The value is twofold: Technological innovation in the field of pavement maintenance, offering a more efficient and automated approach to a common and costly issue. The potential for significant economic and operational benefits, particularly in the context of reduced maintenance budgets and increasing maintenance demands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺猫咪完成签到,获得积分10
13秒前
13秒前
yoyo发布了新的文献求助20
21秒前
冬去春来完成签到 ,获得积分10
22秒前
46秒前
繁星完成签到,获得积分10
50秒前
科研通AI40应助繁荣的青旋采纳,获得10
51秒前
kfh发布了新的文献求助10
53秒前
章铭-111完成签到 ,获得积分10
59秒前
1分钟前
yyr完成签到 ,获得积分10
1分钟前
1分钟前
kokoko完成签到,获得积分10
1分钟前
bkagyin应助kfh采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI40应助繁荣的青旋采纳,获得10
2分钟前
潇洒凝天发布了新的文献求助30
2分钟前
2分钟前
Wilson完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
zhang完成签到 ,获得积分10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
科研通AI40应助繁荣的青旋采纳,获得10
2分钟前
3分钟前
3分钟前
天天快乐应助Vvvkkk采纳,获得30
3分钟前
hahahan完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
开朗灵寒发布了新的文献求助10
3分钟前
彭于晏应助开朗灵寒采纳,获得30
4分钟前
科研通AI40应助繁荣的青旋采纳,获得10
4分钟前
行走完成签到,获得积分10
4分钟前
开朗灵寒完成签到,获得积分20
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064515
关于积分的说明 9088231
捐赠科研通 2755138
什么是DOI,文献DOI怎么找? 1511818
邀请新用户注册赠送积分活动 698589
科研通“疑难数据库(出版商)”最低求助积分说明 698473