Two-stage algorithm for automatic repair of pavement cracks

阶段(地层学) 算法 计算机科学 法律工程学 地质学 工程类 古生物学
作者
Jing Yu,Jiawei Guo,Qi Zhang,Lining Xing,Songtao Lv
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-06-2024-0765
摘要

Purpose To develop an automated system for identifying and repairing cracks in asphalt pavements, addressing the urgent need for efficient pavement maintenance solutions amidst increasing workloads and decreasing budgets. Design/methodology/approach The research was conducted in two main stages: Crack identification: Utilizing the U-Net deep learning model for pixel-level segmentation to identify pavement cracks, followed by morphological operations such as thinning and spur removal to refine the crack trajectories. Automated crack repair path planning: Developing an enhanced hybrid ant colony greedy algorithm (EAC-GA), which integrates the ant colony (AC) algorithm, greedy algorithm (GA) and three local enhancement strategies – PointsExchange, Cracks2OPT and Nearby Cracks 2OPT – to plan the most efficient repair paths with minimal redundant distance. Findings The EAC-GA demonstrated significant advantages in solution quality compared to the GA, the traditional AC and the AC-GA. Experimental validation on repair areas with varying numbers of cracks (16, 26 and 36) confirmed the effectiveness and scalability of the proposed method. Originality/value The originality of this research lies in the application of advanced deep learning and optimization algorithms to the specific problem of pavement crack repair. The value is twofold: Technological innovation in the field of pavement maintenance, offering a more efficient and automated approach to a common and costly issue. The potential for significant economic and operational benefits, particularly in the context of reduced maintenance budgets and increasing maintenance demands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特思卉发布了新的文献求助10
1秒前
2秒前
鱼会淹死吗应助JDT77采纳,获得100
3秒前
4秒前
4秒前
6秒前
7秒前
zly完成签到 ,获得积分10
7秒前
7秒前
科研通AI2S应助paulmichael采纳,获得10
7秒前
lrh发布了新的文献求助10
8秒前
9秒前
现实的断缘完成签到,获得积分10
9秒前
yincy发布了新的文献求助20
10秒前
64658应助zzl-2000采纳,获得10
12秒前
koukaki发布了新的文献求助10
12秒前
ssx发布了新的文献求助10
12秒前
12秒前
领导范儿应助点点点点采纳,获得30
14秒前
ggappsong发布了新的文献求助10
14秒前
轩辕寄风发布了新的文献求助10
15秒前
缥缈幻翠应助Anoxia采纳,获得10
17秒前
易烊千玺完成签到,获得积分20
17秒前
18秒前
18秒前
23lk发布了新的文献求助10
18秒前
koukaki完成签到,获得积分10
19秒前
梅溪湖西完成签到 ,获得积分10
21秒前
喜悦的皮卡丘完成签到,获得积分10
21秒前
23秒前
galeanthropia完成签到,获得积分10
25秒前
26秒前
SciGPT应助沧笙踏歌采纳,获得10
26秒前
26秒前
思源应助直率的火龙果采纳,获得10
27秒前
梅溪湖西关注了科研通微信公众号
28秒前
七喜完成签到 ,获得积分10
28秒前
北梦发布了新的文献求助10
29秒前
Ranchoujay发布了新的文献求助10
29秒前
23lk发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143