Two-stage algorithm for automatic repair of pavement cracks

阶段(地层学) 算法 计算机科学 法律工程学 地质学 工程类 古生物学
作者
Jing Yu,Jiawei Guo,Qi Zhang,Lining Xing,Songtao Lv
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-06-2024-0765
摘要

Purpose To develop an automated system for identifying and repairing cracks in asphalt pavements, addressing the urgent need for efficient pavement maintenance solutions amidst increasing workloads and decreasing budgets. Design/methodology/approach The research was conducted in two main stages: Crack identification: Utilizing the U-Net deep learning model for pixel-level segmentation to identify pavement cracks, followed by morphological operations such as thinning and spur removal to refine the crack trajectories. Automated crack repair path planning: Developing an enhanced hybrid ant colony greedy algorithm (EAC-GA), which integrates the ant colony (AC) algorithm, greedy algorithm (GA) and three local enhancement strategies – PointsExchange, Cracks2OPT and Nearby Cracks 2OPT – to plan the most efficient repair paths with minimal redundant distance. Findings The EAC-GA demonstrated significant advantages in solution quality compared to the GA, the traditional AC and the AC-GA. Experimental validation on repair areas with varying numbers of cracks (16, 26 and 36) confirmed the effectiveness and scalability of the proposed method. Originality/value The originality of this research lies in the application of advanced deep learning and optimization algorithms to the specific problem of pavement crack repair. The value is twofold: Technological innovation in the field of pavement maintenance, offering a more efficient and automated approach to a common and costly issue. The potential for significant economic and operational benefits, particularly in the context of reduced maintenance budgets and increasing maintenance demands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟暮完成签到 ,获得积分10
刚刚
ding应助ann采纳,获得30
刚刚
包容的雅青完成签到,获得积分10
1秒前
2秒前
Smiley完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
6秒前
xx发布了新的文献求助10
6秒前
6秒前
8秒前
李正纲发布了新的文献求助10
8秒前
gyf应助jackten采纳,获得10
9秒前
田様应助海绵宝宝采纳,获得10
9秒前
9秒前
9秒前
慧海拾穗发布了新的文献求助10
9秒前
10秒前
熊猫发布了新的文献求助10
10秒前
11秒前
木头人呐完成签到 ,获得积分10
11秒前
G秋发布了新的文献求助10
12秒前
啦啦发布了新的文献求助10
12秒前
14秒前
王卫完成签到,获得积分10
14秒前
Karry完成签到 ,获得积分10
15秒前
15秒前
星海种花完成签到 ,获得积分10
15秒前
xx完成签到,获得积分10
16秒前
verymiao完成签到 ,获得积分10
16秒前
16秒前
上官若男应助合适猫咪采纳,获得10
17秒前
伶俐飞风发布了新的文献求助20
17秒前
yangmengyuan完成签到 ,获得积分10
18秒前
18秒前
阿月完成签到,获得积分10
18秒前
Ning_完成签到 ,获得积分10
18秒前
wangyuchen发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911732
求助须知:如何正确求助?哪些是违规求助? 4187158
关于积分的说明 13003078
捐赠科研通 3955101
什么是DOI,文献DOI怎么找? 2168564
邀请新用户注册赠送积分活动 1187030
关于科研通互助平台的介绍 1094282