Few-Shot Domain Adaptive Object Detection for Microscopic Images

弹丸 领域(数学分析) 计算机视觉 人工智能 对象(语法) 计算机科学 单发 模式识别(心理学) 物理 光学 数学 材料科学 数学分析 冶金
作者
Sumayya Inayat,Nimra Dilawar,Waqas Sultani,Mohsen Ali
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.07633
摘要

In recent years, numerous domain adaptive strategies have been proposed to help deep learning models overcome the challenges posed by domain shift. However, even unsupervised domain adaptive strategies still require a large amount of target data. Medical imaging datasets are often characterized by class imbalance and scarcity of labeled and unlabeled data. Few-shot domain adaptive object detection (FSDAOD) addresses the challenge of adapting object detectors to target domains with limited labeled data. Existing works struggle with randomly selected target domain images that may not accurately represent the real population, resulting in overfitting to small validation sets and poor generalization to larger test sets. Medical datasets exhibit high class imbalance and background similarity, leading to increased false positives and lower mean Average Precision (map) in target domains. To overcome these challenges, we propose a novel FSDAOD strategy for microscopic imaging. Our contributions include a domain adaptive class balancing strategy for few-shot scenarios, multi-layer instance-level inter and intra-domain alignment to enhance similarity between class instances regardless of domain, and an instance-level classification loss applied in the middle layers of the object detector to enforce feature retention necessary for correct classification across domains. Extensive experimental results with competitive baselines demonstrate the effectiveness of our approach, achieving state-of-the-art results on two public microscopic datasets. Code available at https://github.co/intelligentMachinesLab/few-shot-domain-adaptive-microscopy

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助雨眠采纳,获得10
刚刚
daytoy发布了新的文献求助10
刚刚
wang_dong发布了新的文献求助10
1秒前
1秒前
小马甲应助11111采纳,获得10
2秒前
2秒前
dxftx发布了新的文献求助10
3秒前
3秒前
在水一方应助yuan采纳,获得10
3秒前
孙友浩发布了新的文献求助10
3秒前
乔an发布了新的文献求助10
4秒前
4秒前
研友_Z7gKEZ完成签到,获得积分10
4秒前
MT完成签到,获得积分10
5秒前
7秒前
大个应助呵呵采纳,获得10
7秒前
zh完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
星黛露发布了新的文献求助10
9秒前
9秒前
wb完成签到,获得积分10
9秒前
李健应助huzi采纳,获得10
9秒前
9秒前
白茶清酒完成签到,获得积分10
9秒前
酷波er应助落寞灵安采纳,获得10
10秒前
10秒前
11秒前
贾哲宇发布了新的文献求助10
11秒前
羊羊羊发布了新的文献求助10
11秒前
我是老大应助lsy采纳,获得10
11秒前
li发布了新的文献求助10
11秒前
冷酷蛋挞完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
雷红完成签到 ,获得积分20
14秒前
浮游应助vogo7采纳,获得10
14秒前
欢喜的火龙果完成签到,获得积分10
14秒前
Joseph0209发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578243
求助须知:如何正确求助?哪些是违规求助? 4663137
关于积分的说明 14744830
捐赠科研通 4603883
什么是DOI,文献DOI怎么找? 2526739
邀请新用户注册赠送积分活动 1496343
关于科研通互助平台的介绍 1465712