Few-Shot Domain Adaptive Object Detection for Microscopic Images

弹丸 领域(数学分析) 计算机视觉 人工智能 对象(语法) 计算机科学 单发 模式识别(心理学) 物理 光学 数学 材料科学 数学分析 冶金
作者
Sumayya Inayat,Nimra Dilawar,Waqas Sultani,Mohsen Ali
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.07633
摘要

In recent years, numerous domain adaptive strategies have been proposed to help deep learning models overcome the challenges posed by domain shift. However, even unsupervised domain adaptive strategies still require a large amount of target data. Medical imaging datasets are often characterized by class imbalance and scarcity of labeled and unlabeled data. Few-shot domain adaptive object detection (FSDAOD) addresses the challenge of adapting object detectors to target domains with limited labeled data. Existing works struggle with randomly selected target domain images that may not accurately represent the real population, resulting in overfitting to small validation sets and poor generalization to larger test sets. Medical datasets exhibit high class imbalance and background similarity, leading to increased false positives and lower mean Average Precision (map) in target domains. To overcome these challenges, we propose a novel FSDAOD strategy for microscopic imaging. Our contributions include a domain adaptive class balancing strategy for few-shot scenarios, multi-layer instance-level inter and intra-domain alignment to enhance similarity between class instances regardless of domain, and an instance-level classification loss applied in the middle layers of the object detector to enforce feature retention necessary for correct classification across domains. Extensive experimental results with competitive baselines demonstrate the effectiveness of our approach, achieving state-of-the-art results on two public microscopic datasets. Code available at https://github.co/intelligentMachinesLab/few-shot-domain-adaptive-microscopy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白若可依发布了新的文献求助10
刚刚
刚刚
just发布了新的文献求助10
1秒前
依旧发布了新的文献求助10
1秒前
小二郎应助甜美鬼神采纳,获得10
2秒前
房明锴完成签到,获得积分20
2秒前
wanci应助周维采纳,获得10
2秒前
2秒前
3秒前
浮游应助offred采纳,获得10
3秒前
我嘞个豆完成签到,获得积分10
3秒前
wanci应助岩追研采纳,获得10
3秒前
4秒前
4秒前
4秒前
zjq发布了新的文献求助10
4秒前
房明锴发布了新的文献求助10
5秒前
5秒前
znsmaqwdy发布了新的文献求助10
5秒前
情怀应助MH采纳,获得10
5秒前
虚心元绿完成签到,获得积分10
6秒前
6秒前
save发布了新的文献求助10
6秒前
Wang发布了新的文献求助200
6秒前
西木完成签到,获得积分10
6秒前
清爽朋友发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
狂野绿竹完成签到,获得积分10
8秒前
11完成签到,获得积分10
8秒前
8秒前
hoongyan完成签到 ,获得积分10
10秒前
10秒前
侯笑笑发布了新的文献求助30
10秒前
孙行行完成签到,获得积分10
11秒前
洁净山灵完成签到,获得积分10
11秒前
科研通AI6应助hersy采纳,获得10
11秒前
可积完成签到,获得积分10
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709