PPDC: An online platform for the prediction of plant distributions in China

中国 农林复合经营 环境科学 计量经济学 地理 林业 生态学 生物 数学 考古
作者
Jinshui Qiu,Jianwen Zhang,Yanan Wang,Huifu Zhuang
出处
期刊:Journal of Plant Ecology [Oxford University Press]
标识
DOI:10.1093/jpe/rtae094
摘要

Abstract The survival and reproduction of plants in a particular region are closely related to the local ecological niche. The use of species distribution models based on the ecological niche concept to predict potential distributions can effectively guide the protection of endangered plants, prevention and control of invasive plants, and plant introduction and ex-situ conservation. However, traditional methods and processes for predicting potential distributions of plants are tedious and complex, requiring the collection and processing of large amounts of data and the manual operation of multiple tools. Therefore, it is difficult to achieve large-scale prediction of the potential distributions of plants. To address these limitations, by collecting and organizing a large amount of basic data, occurrence records, and environmental data and integrating species distribution models and mapping techniques, a workflow to automatically predict the potential distributions of Chinese plants was established, thus the innovative work of predicting the potential distributions of 32,000 species of plants in China was completed. Furthermore, an online platform for predicting plant distributions in China (PPDC) based on visualization technology was developed, providing a basis for sharing the prediction results across a wide range of scientists and technologists. Users can quickly access information about the potential distributions of plants in China, providing a reference for the collection, preservation, and protection of plant resources. In addition, users can quickly predict the potential distribution of a certain plant in a certain region in China according to specific needs, thus providing technical support for research and a basis for biodiversity conservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木虫完成签到,获得积分10
1秒前
失眠的之桃完成签到,获得积分10
2秒前
nnetth完成签到 ,获得积分10
3秒前
恐龙先生完成签到,获得积分10
3秒前
万能图书馆应助brossica采纳,获得10
4秒前
一一应助brossica采纳,获得10
4秒前
ATCG完成签到,获得积分20
5秒前
那些年发布了新的文献求助10
5秒前
CHEN发布了新的文献求助10
5秒前
6秒前
6秒前
光亮的素发布了新的文献求助10
8秒前
王小志完成签到,获得积分10
10秒前
哈哈哈发布了新的文献求助10
11秒前
xiao完成签到,获得积分10
11秒前
Horizon发布了新的文献求助10
12秒前
iooi关注了科研通微信公众号
13秒前
13秒前
14秒前
金刚经应助brossica采纳,获得10
14秒前
共享精神应助brossica采纳,获得10
14秒前
Owen应助brossica采纳,获得10
14秒前
HJJ应助brossica采纳,获得30
15秒前
领导范儿应助brossica采纳,获得10
15秒前
聪仔应助brossica采纳,获得30
15秒前
科研通AI2S应助brossica采纳,获得10
15秒前
香蕉觅云应助brossica采纳,获得10
15秒前
聪仔应助brossica采纳,获得10
15秒前
gsx应助brossica采纳,获得10
15秒前
17秒前
流流124141完成签到 ,获得积分10
17秒前
19秒前
小马甲应助mc采纳,获得10
19秒前
19秒前
愉快问枫发布了新的文献求助10
20秒前
21秒前
Lucas应助CHEN采纳,获得10
21秒前
我是老大应助Hao采纳,获得10
21秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260523
求助须知:如何正确求助?哪些是违规求助? 2901713
关于积分的说明 8316694
捐赠科研通 2571240
什么是DOI,文献DOI怎么找? 1396950
科研通“疑难数据库(出版商)”最低求助积分说明 653598
邀请新用户注册赠送积分活动 632040