CrossFormer: Cross-modal Representation Learning via Heterogeneous Graph Transformer

计算机科学 情态动词 变压器 图形 代表(政治) 理论计算机科学 人工智能 电压 政治学 量子力学 政治 物理 化学 高分子化学 法学
作者
Xiao Liang,Erkun Yang,Cheng Deng,Yanhua Yang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3688801
摘要

Transformers have been recognized as powerful tools for various cross-modal tasks due to their superior ability to perform representation learning through self-attention. Existing transformer-based cross-modal models can be categorized into single-stream and dual-stream ones. By performing fine-grained interaction with self-attention on the cross-modal concatenated features, the former can simultaneously learn intra- and inter-modal correlations. However, this simple concatenation treats the inputs of different modalities equally; as a result, the heterogeneous differences between modalities are ignored, leading to a modality gap. The latter process the inputs of different modalities separately, then perform cross-modal interaction on the subsequently fused networks, resulting in a failure to integrate the fine-grained correlations of both intra- and inter-modality in a uniform module. To this end, we propose an effective heterogeneous graph transformer for dual-stream cross-modal representation learning, named CrossFormer, which constructs a heterogeneous graph as a bridge to achieve fine-grained intra- and inter-modal interaction on a dual-stream network. Specifically, we first represent multi-modal data with a heterogeneous graph, then develop a dual-positional encoding strategy that enables the heterogeneous graph to obtain the relative positional information. Finally, a dual-stream self-attention is performed on the heterogeneous graph, bridging the gap between modalities and effectively capturing fine-grained intra- and inter-modal interactions simultaneously. Extensive experiments on various cross-modal tasks demonstrate the superiority of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的尔竹完成签到,获得积分10
刚刚
刚刚
1秒前
啦啦啦完成签到,获得积分10
1秒前
酷波er应助矿泉水采纳,获得10
2秒前
小爽完成签到,获得积分10
2秒前
2秒前
逢春完成签到,获得积分10
2秒前
哈尼完成签到,获得积分10
2秒前
荡秋千的猴子完成签到,获得积分10
2秒前
浮名半生完成签到,获得积分10
3秒前
edtaa完成签到 ,获得积分10
3秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
zho应助科研通管家采纳,获得10
4秒前
迟大猫应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Agernon应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
俊藏星河发布了新的文献求助10
5秒前
丹布里发布了新的文献求助10
6秒前
小胡完成签到,获得积分10
6秒前
TTT发布了新的文献求助10
6秒前
7秒前
7秒前
到江南散步完成签到,获得积分10
7秒前
云云完成签到,获得积分10
8秒前
个性的德天完成签到,获得积分10
8秒前
充电宝应助interest-li采纳,获得10
8秒前
9秒前
毕个业完成签到 ,获得积分10
9秒前
诚心的箴完成签到,获得积分10
10秒前
addi111完成签到,获得积分10
10秒前
2024020847完成签到,获得积分10
10秒前
芝麻糊发布了新的文献求助10
11秒前
爱静静应助赵文若采纳,获得10
11秒前
我根本没长尾巴完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912