CrossFormer: Cross-modal Representation Learning via Heterogeneous Graph Transformer

计算机科学 情态动词 变压器 图形 代表(政治) 理论计算机科学 人工智能 电压 政治学 量子力学 政治 物理 化学 高分子化学 法学
作者
Xiao Liang,Erkun Yang,Cheng Deng,Yanhua Yang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:2
标识
DOI:10.1145/3688801
摘要

Transformers have been recognized as powerful tools for various cross-modal tasks due to their superior ability to perform representation learning through self-attention. Existing transformer-based cross-modal models can be categorized into single-stream and dual-stream ones. By performing fine-grained interaction with self-attention on the cross-modal concatenated features, the former can simultaneously learn intra- and inter-modal correlations. However, this simple concatenation treats the inputs of different modalities equally; as a result, the heterogeneous differences between modalities are ignored, leading to a modality gap. The latter process the inputs of different modalities separately, then perform cross-modal interaction on the subsequently fused networks, resulting in a failure to integrate the fine-grained correlations of both intra- and inter-modality in a uniform module. To this end, we propose an effective heterogeneous graph transformer for dual-stream cross-modal representation learning, named CrossFormer, which constructs a heterogeneous graph as a bridge to achieve fine-grained intra- and inter-modal interaction on a dual-stream network. Specifically, we first represent multi-modal data with a heterogeneous graph, then develop a dual-positional encoding strategy that enables the heterogeneous graph to obtain the relative positional information. Finally, a dual-stream self-attention is performed on the heterogeneous graph, bridging the gap between modalities and effectively capturing fine-grained intra- and inter-modal interactions simultaneously. Extensive experiments on various cross-modal tasks demonstrate the superiority of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ericzhouxx完成签到,获得积分10
1秒前
2秒前
2秒前
111发布了新的文献求助10
2秒前
wonder完成签到,获得积分10
2秒前
Vi发布了新的文献求助10
3秒前
顺毕完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
yjjh完成签到,获得积分10
4秒前
4秒前
4秒前
葳蕤发布了新的文献求助10
4秒前
liying发布了新的文献求助10
6秒前
困困困完成签到,获得积分10
7秒前
瓜瓜完成签到,获得积分20
7秒前
babayega发布了新的文献求助10
8秒前
yjjh发布了新的文献求助10
8秒前
小橙子发布了新的文献求助10
8秒前
嗯很好发布了新的文献求助10
8秒前
8秒前
9秒前
reny_o完成签到,获得积分10
9秒前
大方觅珍完成签到,获得积分20
10秒前
10秒前
万能图书馆应助瓜瓜采纳,获得10
10秒前
11秒前
12306完成签到,获得积分20
12秒前
努力搞科研完成签到,获得积分10
12秒前
12秒前
完美世界应助会会采纳,获得10
13秒前
13秒前
样样发布了新的文献求助10
13秒前
幸福时光完成签到,获得积分10
14秒前
14秒前
14秒前
协奏曲完成签到 ,获得积分10
14秒前
英俊的铭应助受伤幻桃采纳,获得10
15秒前
mystryjoker发布了新的文献求助10
15秒前
无花果应助bjbbh采纳,获得30
16秒前
想逃离发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099