CrossFormer: Cross-modal Representation Learning via Heterogeneous Graph Transformer

计算机科学 情态动词 变压器 图形 代表(政治) 理论计算机科学 人工智能 电压 化学 物理 量子力学 政治 政治学 高分子化学 法学
作者
Xiao Liang,Erkun Yang,Cheng Deng,Yanhua Yang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3688801
摘要

Transformers have been recognized as powerful tools for various cross-modal tasks due to their superior ability to perform representation learning through self-attention. Existing transformer-based cross-modal models can be categorized into single-stream and dual-stream ones. By performing fine-grained interaction with self-attention on the cross-modal concatenated features, the former can simultaneously learn intra- and inter-modal correlations. However, this simple concatenation treats the inputs of different modalities equally; as a result, the heterogeneous differences between modalities are ignored, leading to a modality gap. The latter process the inputs of different modalities separately, then perform cross-modal interaction on the subsequently fused networks, resulting in a failure to integrate the fine-grained correlations of both intra- and inter-modality in a uniform module. To this end, we propose an effective heterogeneous graph transformer for dual-stream cross-modal representation learning, named CrossFormer, which constructs a heterogeneous graph as a bridge to achieve fine-grained intra- and inter-modal interaction on a dual-stream network. Specifically, we first represent multi-modal data with a heterogeneous graph, then develop a dual-positional encoding strategy that enables the heterogeneous graph to obtain the relative positional information. Finally, a dual-stream self-attention is performed on the heterogeneous graph, bridging the gap between modalities and effectively capturing fine-grained intra- and inter-modal interactions simultaneously. Extensive experiments on various cross-modal tasks demonstrate the superiority of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuqian发布了新的文献求助10
3秒前
顾矜应助清秀的小狗采纳,获得10
3秒前
小库里2025完成签到,获得积分10
4秒前
小蘑菇应助nsc采纳,获得10
5秒前
张涛完成签到,获得积分10
6秒前
6秒前
Lucas应助sandy_bear采纳,获得10
7秒前
wanci应助CC采纳,获得30
7秒前
9秒前
安安rio完成签到 ,获得积分10
9秒前
9秒前
muum完成签到,获得积分20
10秒前
10秒前
11秒前
13秒前
13秒前
爆米花应助meteorabob采纳,获得10
14秒前
15秒前
土豆完成签到 ,获得积分10
15秒前
15秒前
慕青应助Virgil采纳,获得10
16秒前
16秒前
Tanghx发布了新的文献求助10
16秒前
linyin关注了科研通微信公众号
16秒前
17秒前
研友_VZG7GZ应助qqsaosa采纳,获得10
17秒前
nsc发布了新的文献求助10
18秒前
yichun完成签到,获得积分10
18秒前
XC发布了新的文献求助30
19秒前
顾木木发布了新的文献求助10
19秒前
光风霁月完成签到,获得积分10
21秒前
沉静的唯雪应助liu采纳,获得10
21秒前
wanci应助0609采纳,获得10
22秒前
23秒前
24秒前
onmyway完成签到,获得积分10
25秒前
celine完成签到,获得积分10
25秒前
一点不懂发布了新的文献求助10
25秒前
wdd完成签到,获得积分10
25秒前
远古遗迹完成签到,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443772
求助须知:如何正确求助?哪些是违规求助? 3039907
关于积分的说明 8978775
捐赠科研通 2728422
什么是DOI,文献DOI怎么找? 1496514
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213