亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CrossFormer: Cross-modal Representation Learning via Heterogeneous Graph Transformer

计算机科学 情态动词 变压器 图形 代表(政治) 理论计算机科学 人工智能 电压 政治学 量子力学 政治 物理 化学 高分子化学 法学
作者
Xiao Liang,Erkun Yang,Cheng Deng,Yanhua Yang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:4
标识
DOI:10.1145/3688801
摘要

Transformers have been recognized as powerful tools for various cross-modal tasks due to their superior ability to perform representation learning through self-attention. Existing transformer-based cross-modal models can be categorized into single-stream and dual-stream ones. By performing fine-grained interaction with self-attention on the cross-modal concatenated features, the former can simultaneously learn intra- and inter-modal correlations. However, this simple concatenation treats the inputs of different modalities equally; as a result, the heterogeneous differences between modalities are ignored, leading to a modality gap. The latter process the inputs of different modalities separately, then perform cross-modal interaction on the subsequently fused networks, resulting in a failure to integrate the fine-grained correlations of both intra- and inter-modality in a uniform module. To this end, we propose an effective heterogeneous graph transformer for dual-stream cross-modal representation learning, named CrossFormer, which constructs a heterogeneous graph as a bridge to achieve fine-grained intra- and inter-modal interaction on a dual-stream network. Specifically, we first represent multi-modal data with a heterogeneous graph, then develop a dual-positional encoding strategy that enables the heterogeneous graph to obtain the relative positional information. Finally, a dual-stream self-attention is performed on the heterogeneous graph, bridging the gap between modalities and effectively capturing fine-grained intra- and inter-modal interactions simultaneously. Extensive experiments on various cross-modal tasks demonstrate the superiority of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺可乐发布了新的文献求助30
刚刚
zqq完成签到,获得积分0
1秒前
清爽谷秋发布了新的文献求助20
1秒前
江南第八完成签到,获得积分10
13秒前
壮观的谷冬完成签到 ,获得积分0
20秒前
传奇3应助zeyin采纳,获得10
27秒前
清爽谷秋完成签到,获得积分20
29秒前
lillian完成签到,获得积分10
30秒前
36秒前
46秒前
英俊的铭应助科研通管家采纳,获得10
50秒前
dgcyjvfb发布了新的文献求助10
52秒前
54秒前
zeyin发布了新的文献求助10
59秒前
丽娘完成签到 ,获得积分10
1分钟前
zeyin完成签到,获得积分10
1分钟前
1分钟前
ljl86400完成签到,获得积分10
1分钟前
852应助包容的绿蕊采纳,获得10
1分钟前
liuxian发布了新的文献求助10
1分钟前
1933644015应助淡然的妙芙采纳,获得50
1分钟前
华仔应助黄玉采纳,获得10
1分钟前
1分钟前
1分钟前
liuxian完成签到,获得积分10
1分钟前
1分钟前
黄玉发布了新的文献求助10
1分钟前
Honor完成签到 ,获得积分10
2分钟前
敏静完成签到,获得积分10
2分钟前
CipherSage应助archsaly采纳,获得10
2分钟前
archsaly完成签到,获得积分10
2分钟前
2分钟前
archsaly发布了新的文献求助10
2分钟前
科研通AI5应助安详的一曲采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
逮劳完成签到 ,获得积分10
3分钟前
Ava应助Cala洛~采纳,获得10
3分钟前
3分钟前
kukudou2发布了新的文献求助10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220883
求助须知:如何正确求助?哪些是违规求助? 4394087
关于积分的说明 13680180
捐赠科研通 4257138
什么是DOI,文献DOI怎么找? 2335963
邀请新用户注册赠送积分活动 1333573
关于科研通互助平台的介绍 1288039