The disorder of gut microbiota has negative impact on male reproductive, and testicular damage is associated with obesity. However, the detailed mechanism of gut microbiota on the obesity-induced testis injury are still unknown. Therefore, we constructed a mouse model to investigate the effects of obesity on testis injury. In this study, we found that HFD-induced obesity could disorder gut microbiota homeostasis, which increased the abundance of Brevundimonas, Desulfovibrionaceae_unclassified and Ralstonia, ultimately leading to the overproduction of lipopolysaccharides (LPS). Meanwhile, HFD-feeding promoted intestinal permeability via inhibiting expression of tight junction proteins (ZO-1, Occludin and Claudin) and reducing excretion of mucus, leading to translocation of LPS. The over-accumulation of LPS in the bloodstream triggered an inflammatory response by activating TLR4/NF-κB pathway in testis. On the other hand, the gut microbiota produced-LPS also could induce ferroptosis in testis, as reflected by enhancing iron content and lipid peroxidation (MDA), as well as decreasing ferroptosis-related proteins, including GPX4, FTH1 and SLC1A11. Moreover, inhibition of LPS ligand (TLR4) with Resatorvid (TAK-242) alleviated obesity-induced testis injury through suppression of inflammation and ferroptosis. In conclusion, this study provides novel insights into the underlying mechanisms of obesity-related testis injury induced by gut microbiota disorder via the gut-testis axis, thus offering potential targets to counteract obesity-induced male reproductive disorder.