A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

卷积神经网络 约束(计算机辅助设计) 计算机科学 人工智能 人工神经网络 机器学习 数学 几何学
作者
Jianghong Zhou,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3462723
摘要

The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘映易完成签到,获得积分0
1秒前
XU博士完成签到,获得积分10
3秒前
林药师完成签到,获得积分10
4秒前
逢场作戱__完成签到 ,获得积分10
4秒前
想睡觉的小笼包完成签到 ,获得积分10
17秒前
20秒前
23秒前
25秒前
研友_ZGR70n完成签到 ,获得积分10
41秒前
47秒前
科研通AI5应助股价采纳,获得10
47秒前
desperado完成签到 ,获得积分10
52秒前
伊笙完成签到 ,获得积分10
53秒前
crown发布了新的文献求助10
54秒前
Helu完成签到 ,获得积分10
1分钟前
默11完成签到 ,获得积分10
1分钟前
jun完成签到,获得积分10
1分钟前
《子非鱼》完成签到,获得积分10
1分钟前
DGYT7786完成签到 ,获得积分10
1分钟前
1分钟前
墨墨完成签到 ,获得积分10
1分钟前
1分钟前
liaomr发布了新的文献求助10
1分钟前
畅快的念烟完成签到,获得积分10
1分钟前
义气的硬币完成签到,获得积分10
1分钟前
森森完成签到 ,获得积分10
1分钟前
2分钟前
特别圆的正方形完成签到 ,获得积分10
2分钟前
Ding-Ding完成签到,获得积分10
2分钟前
独孤完成签到 ,获得积分10
2分钟前
elmqs完成签到,获得积分10
2分钟前
悟空发布了新的文献求助10
2分钟前
lingling完成签到 ,获得积分10
2分钟前
2分钟前
lzx应助科研通管家采纳,获得100
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
研友Bn完成签到 ,获得积分10
2分钟前
海英完成签到,获得积分10
2分钟前
monster完成签到 ,获得积分10
2分钟前
Alan完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155814
捐赠科研通 3245466
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247