A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

卷积神经网络 约束(计算机辅助设计) 计算机科学 人工智能 人工神经网络 机器学习 数学 几何学
作者
Jianghong Zhou,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3462723
摘要

The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huayi发布了新的文献求助10
1秒前
1秒前
林见清完成签到,获得积分10
1秒前
1秒前
隐形曼青应助liia采纳,获得10
1秒前
英姑应助薛博文采纳,获得10
1秒前
BowieHuang应助清脆哈密瓜采纳,获得10
1秒前
2秒前
WzH发布了新的文献求助10
3秒前
3秒前
3秒前
富贵儿发布了新的文献求助10
4秒前
66发布了新的文献求助10
4秒前
4秒前
优雅沛文发布了新的文献求助10
5秒前
烟花应助zhao采纳,获得10
5秒前
5秒前
顺利毕业发布了新的文献求助80
5秒前
科研通AI6应助ning采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
YH完成签到,获得积分10
7秒前
7秒前
周文鑫发布了新的文献求助10
8秒前
8秒前
宋宋发布了新的文献求助10
8秒前
重要的炳完成签到 ,获得积分10
8秒前
超体完成签到 ,获得积分10
8秒前
8秒前
顺心冬卉发布了新的文献求助10
9秒前
汉堡包应助zehua309采纳,获得10
9秒前
9秒前
9秒前
9秒前
充电宝应助知秋采纳,获得10
9秒前
科研通AI6应助天空之城采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616