A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

卷积神经网络 约束(计算机辅助设计) 计算机科学 人工智能 人工神经网络 机器学习 数学 几何学
作者
Jianghong Zhou,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3462723
摘要

The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangdoudou关注了科研通微信公众号
3秒前
lansing完成签到 ,获得积分10
3秒前
Li完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
结实天川发布了新的文献求助10
7秒前
微笑完成签到,获得积分10
8秒前
充电宝应助1234567采纳,获得10
9秒前
李桂芳完成签到,获得积分10
11秒前
拽而不狂完成签到,获得积分10
11秒前
花汀酒完成签到 ,获得积分10
12秒前
是真的宇航员啊完成签到,获得积分10
13秒前
14秒前
14秒前
文艺的懿完成签到,获得积分10
16秒前
水123发布了新的文献求助10
19秒前
匡杰嘉发布了新的文献求助10
19秒前
20秒前
20秒前
山长子完成签到,获得积分10
21秒前
清爽的诗槐完成签到,获得积分10
22秒前
拽而不狂发布了新的文献求助10
24秒前
swan完成签到 ,获得积分10
24秒前
25秒前
愤怒的连虎完成签到,获得积分20
25秒前
Amber发布了新的文献求助10
26秒前
善学以致用应助WYH采纳,获得10
26秒前
草拟大坝完成签到 ,获得积分0
27秒前
27秒前
28秒前
shinble发布了新的文献求助30
30秒前
切切发布了新的文献求助10
33秒前
懒洋洋完成签到,获得积分10
33秒前
Hilda007发布了新的文献求助10
33秒前
cc完成签到 ,获得积分20
34秒前
34秒前
优美紫槐应助清爽的诗槐采纳,获得10
35秒前
dd完成签到,获得积分10
37秒前
Miianlli完成签到 ,获得积分10
38秒前
酷酷完成签到,获得积分10
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832