A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

卷积神经网络 约束(计算机辅助设计) 计算机科学 人工智能 人工神经网络 机器学习 数学 几何学
作者
Jianghong Zhou,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3462723
摘要

The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜青菜完成签到 ,获得积分10
刚刚
小马甲应助忧心的洙采纳,获得10
刚刚
刚刚
完美世界应助酷炫贞采纳,获得10
刚刚
Archer完成签到,获得积分10
刚刚
笑点低的凝阳完成签到,获得积分10
刚刚
无极微光应助柠檬不萌采纳,获得20
刚刚
量子星尘发布了新的文献求助10
刚刚
美好乌冬面完成签到,获得积分10
1秒前
淳于语海发布了新的文献求助10
1秒前
xiami发布了新的文献求助20
1秒前
1秒前
qqq完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
jiayue完成签到,获得积分10
2秒前
路远发布了新的文献求助10
2秒前
2秒前
2秒前
华仔应助凯凯采纳,获得10
2秒前
夏xia完成签到,获得积分10
3秒前
jingYY发布了新的文献求助10
3秒前
3秒前
Alpha完成签到,获得积分10
3秒前
3秒前
爱听歌的依霜完成签到,获得积分10
4秒前
4秒前
Hello应助平淡糖豆采纳,获得10
5秒前
负责的井发布了新的文献求助10
5秒前
loppy发布了新的文献求助10
5秒前
领导范儿应助开心的行云采纳,获得10
5秒前
5秒前
Thestar完成签到,获得积分10
6秒前
6秒前
redamancy完成签到 ,获得积分10
6秒前
晴天完成签到,获得积分10
6秒前
7秒前
fyjlfy完成签到 ,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997