A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

卷积神经网络 约束(计算机辅助设计) 计算机科学 人工智能 人工神经网络 机器学习 数学 几何学
作者
Jianghong Zhou,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3462723
摘要

The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助HUSHIYI采纳,获得10
刚刚
YG完成签到,获得积分10
刚刚
刚刚
1秒前
3秒前
4秒前
陈教授发布了新的文献求助10
4秒前
aidiresi发布了新的文献求助10
5秒前
ZhenpuWang发布了新的文献求助10
6秒前
阿龚发布了新的文献求助10
6秒前
zzzz发布了新的文献求助10
6秒前
7秒前
ich完成签到 ,获得积分20
8秒前
健忘怜雪发布了新的文献求助10
9秒前
9秒前
李健应助图图采纳,获得10
10秒前
12秒前
HUSHIYI发布了新的文献求助10
12秒前
13秒前
比耶发布了新的文献求助10
14秒前
冷艳的寻冬完成签到,获得积分10
15秒前
所所应助认真初之采纳,获得10
15秒前
anna1992发布了新的文献求助10
16秒前
火星上莛发布了新的文献求助10
17秒前
打打应助rachel03采纳,获得10
18秒前
CipherSage应助bzc采纳,获得20
20秒前
量子星尘发布了新的文献求助30
21秒前
22秒前
ich关注了科研通微信公众号
22秒前
学术射手完成签到,获得积分10
22秒前
quhayley应助tuanheqi采纳,获得30
23秒前
23秒前
张泽轩完成签到,获得积分10
23秒前
比耶完成签到,获得积分10
24秒前
24秒前
JamesPei应助JggHoo采纳,获得10
26秒前
26秒前
Archer完成签到,获得积分10
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003304
求助须知:如何正确求助?哪些是违规求助? 4248101
关于积分的说明 13235186
捐赠科研通 4047086
什么是DOI,文献DOI怎么找? 2214172
邀请新用户注册赠送积分活动 1224222
关于科研通互助平台的介绍 1144483