清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

卷积神经网络 约束(计算机辅助设计) 计算机科学 人工智能 人工神经网络 机器学习 数学 几何学
作者
Jianghong Zhou,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3462723
摘要

The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyu完成签到,获得积分10
10秒前
乐乐应助yuyu采纳,获得10
16秒前
ira完成签到,获得积分10
22秒前
lixiaolan完成签到 ,获得积分10
26秒前
和谐的夏岚完成签到 ,获得积分10
33秒前
44秒前
BowieHuang应助科研通管家采纳,获得10
51秒前
在水一方完成签到 ,获得积分0
1分钟前
1分钟前
安蓝完成签到,获得积分10
1分钟前
1分钟前
1分钟前
李小野完成签到 ,获得积分10
1分钟前
HHM发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
害怕的小刺猬完成签到 ,获得积分10
2分钟前
涛1完成签到 ,获得积分10
2分钟前
HHM发布了新的文献求助10
2分钟前
胡萝卜完成签到 ,获得积分10
2分钟前
2分钟前
dddd完成签到 ,获得积分10
2分钟前
yuyu发布了新的文献求助10
2分钟前
2分钟前
智者雨人完成签到 ,获得积分10
3分钟前
ys完成签到 ,获得积分10
3分钟前
long完成签到,获得积分0
3分钟前
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
忐忐忑忑涛完成签到,获得积分10
4分钟前
4分钟前
4分钟前
余慵慵完成签到 ,获得积分10
4分钟前
紫熊完成签到,获得积分10
4分钟前
4分钟前
lyj完成签到 ,获得积分0
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534510
求助须知:如何正确求助?哪些是违规求助? 4622572
关于积分的说明 14582648
捐赠科研通 4562688
什么是DOI,文献DOI怎么找? 2500311
邀请新用户注册赠送积分活动 1479846
关于科研通互助平台的介绍 1451046