A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

卷积神经网络 约束(计算机辅助设计) 计算机科学 人工智能 人工神经网络 机器学习 数学 几何学
作者
Jianghong Zhou,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3462723
摘要

The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐艺发布了新的文献求助10
1秒前
Jolin完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
王壕发布了新的文献求助10
4秒前
打打应助唐小颖采纳,获得10
5秒前
Alivelean完成签到,获得积分20
5秒前
wu发布了新的文献求助10
6秒前
9秒前
黄则已发布了新的文献求助10
10秒前
CCCC完成签到,获得积分10
10秒前
ssss完成签到,获得积分10
10秒前
M_发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
坚强的小丸子完成签到 ,获得积分20
12秒前
13秒前
XIANGYI完成签到 ,获得积分10
13秒前
BowieHuang应助fafafa采纳,获得10
14秒前
直率曼荷完成签到,获得积分10
14秒前
懒得可爱完成签到,获得积分10
15秒前
出其东门发布了新的文献求助10
15秒前
15秒前
新xin发布了新的文献求助10
16秒前
刘鑫如发布了新的文献求助10
17秒前
17秒前
大模型应助kk采纳,获得10
18秒前
善学以致用应助mrz采纳,获得20
19秒前
大胆听莲完成签到 ,获得积分10
20秒前
11111完成签到,获得积分10
21秒前
21秒前
充电宝应助luo采纳,获得10
21秒前
帅气的小翟完成签到,获得积分10
23秒前
闪闪的乐蕊完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
24秒前
1774181866发布了新的文献求助10
25秒前
wjy321发布了新的文献求助10
26秒前
李小聪完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713458
求助须知:如何正确求助?哪些是违规求助? 5215299
关于积分的说明 15270846
捐赠科研通 4865190
什么是DOI,文献DOI怎么找? 2611932
邀请新用户注册赠送积分活动 1562095
关于科研通互助平台的介绍 1519329