校准
预测区间
计算机科学
估计理论
度量(数据仓库)
噪音(视频)
估计
不确定度量化
干扰(通信)
置信区间
统计
数据挖掘
算法
数学
人工智能
机器学习
工程类
系统工程
计算机网络
频道(广播)
图像(数学)
作者
Ishan D. Khurjekar,Peter Gerstoft
出处
期刊:Journal of the Acoustical Society of America
[Acoustical Society of America]
日期:2024-10-01
卷期号:156 (4): 2656-2667
摘要
Acoustical parameter estimation is a routine task in many domains. The performance of existing estimation methods is affected by external uncertainty, yet the methods provide no measure of confidence in the estimates. Hence, it is crucial to quantify estimate uncertainty before real-world deployment. Conformal prediction (CP) generates statistically valid prediction intervals for any estimation model using calibration data; a limitation is that calibration data needed by CP must come from the same distribution as the test-time data. In this work, we propose to use CP to obtain statistically valid uncertainty intervals for acoustical parameter estimation using a data-driven model or an analytical model without training data. We consider direction-of-arrival estimation and localization of sources. The performance is validated on plane wave data with different sources of uncertainty, including ambient noise, interference, and sensor location uncertainty. The application of CP for data-driven and traditional propagation models is demonstrated. Results show that CP can be used for statistically valid uncertainty quantification with proper calibration data.
科研通智能强力驱动
Strongly Powered by AbleSci AI