Innovative N-Acridine Thiosemicarbazones and Their Zn(II) Complexes Transmetallate with Cu(II): Redox Activity and Suppression of Detrimental Oxy-Myoglobin Oxidation
化学
肌红蛋白
氧化还原
吖啶
氧化还原
无机化学
光化学
药物化学
有机化学
生物化学
作者
Büşra Kaya,H. R. Smith,Yanbing Chen,Mahan Gholam Azad,Tiffany M. Russell,Věra Richardson,Mahendiran Dharmasivam,Des R. Richardson
出处
期刊:Inorganic Chemistry [American Chemical Society] 日期:2024-10-15卷期号:63 (43): 20840-20858
The coordination chemistry and electrochemistry of novel N-acridine thiosemicarbazones (NATs) were investigated along with their redox activity, antiproliferative efficacy, transmetalation, and dissociation properties. The ability of NAT Fe(III) complexes to inhibit detrimental oxy-myoglobin (oxy-Mb) oxidation was also examined. The NATs act as tridentate ligands with a 2:1 L/Zn(II) complex crystal structure, revealing a distorted octahedral geometry, where both ligands bind Zn(II) in a meridional conformation. The NAT Fe(III) complexes exhibited fully reversible one-electron FeIII/II couples with more positive potentials than the Fe(III) complexes of a related clinically trialed thiosemicarbazone (e.g., [Fe(DpC)2]+) due to the electron-donating capacity of acridine. Surprisingly, the NAT-Zn(II) complexes showed generally greater or similar antiproliferative activity than their ligands, Cu(II), or Fe(III) complexes. This may be explained by (1) formation of a highly lipophilic Zn(II) complex that acts as a chaperone to promote cellular uptake and (2) the capacity of the Zn(II) complex to dissociate or undergo transmetalation to the redox-active Cu(II) complex. Of the NAT-Fe(III) complexes, [Fe(AOBP)2]+ demonstrated a significant (p < 0.0001) improvement in preventing oxy-Mb oxidation than the Fe(III) complex of the clinically trialed thiosemicarbazone, DpC. This article advances our understanding of NAT coordination chemistry, electrochemistry, and the intriguing biological activity of their complexes.