A deep learning-based method for the detection and segmentation of breast masses in ultrasound images

人工智能 乳腺超声检查 分割 深度学习 超声波 计算机视觉 计算机科学 放射科 医学 乳腺癌 乳腺摄影术 内科学 癌症
作者
Wanqing Li,Xianjun Ye,Xuemin Chen,Xianxian Jiang,Yidong Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (15): 155027-155027
标识
DOI:10.1088/1361-6560/ad61b6
摘要

Abstract Objective. Automated detection and segmentation of breast masses in ultrasound images are critical for breast cancer diagnosis, but remain challenging due to limited image quality and complex breast tissues. This study aims to develop a deep learning-based method that enables accurate breast mass detection and segmentation in ultrasound images. Approach. A novel convolutional neural network-based framework that combines the You Only Look Once (YOLO) v5 network and the Global-Local (GOLO) strategy was developed. First, YOLOv5 was applied to locate the mass regions of interest (ROIs). Second, a Global Local-Connected Multi-Scale Selection (GOLO-CMSS) network was developed to segment the masses. The GOLO-CMSS operated on both the entire images globally and mass ROIs locally, and then integrated the two branches for a final segmentation output. Particularly, in global branch, CMSS applied Multi-Scale Selection (MSS) modules to automatically adjust the receptive fields, and Multi-Input (MLI) modules to enable fusion of shallow and deep features at different resolutions. The USTC dataset containing 28 477 breast ultrasound images was collected for training and test. The proposed method was also tested on three public datasets, UDIAT, BUSI and TUH. The segmentation performance of GOLO-CMSS was compared with other networks and three experienced radiologists. Main results. YOLOv5 outperformed other detection models with average precisions of 99.41%, 95.15%, 93.69% and 96.42% on the USTC, UDIAT, BUSI and TUH datasets, respectively. The proposed GOLO-CMSS showed superior segmentation performance over other state-of-the-art networks, with Dice similarity coefficients (DSCs) of 93.19%, 88.56%, 87.58% and 90.37% on the USTC, UDIAT, BUSI and TUH datasets, respectively. The mean DSC between GOLO-CMSS and each radiologist was significantly better than that between radiologists ( p < 0.001). Significance. Our proposed method can accurately detect and segment breast masses with a decent performance comparable to radiologists, highlighting its great potential for clinical implementation in breast ultrasound examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研工头发布了新的文献求助10
1秒前
研友_8RyzBZ发布了新的文献求助10
1秒前
小二郎应助夏艳青采纳,获得10
1秒前
回眸是明眸完成签到,获得积分10
1秒前
zz发布了新的文献求助10
4秒前
4秒前
Hello应助yao采纳,获得10
4秒前
无花果应助怡然小蚂蚁采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
绿大暗发布了新的文献求助10
9秒前
10秒前
xuan发布了新的文献求助30
10秒前
10秒前
11秒前
李锐完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
星辰大海应助懒得取名字采纳,获得10
13秒前
13秒前
彭于晏应助研友_8RyzBZ采纳,获得10
14秒前
14秒前
百草园发布了新的文献求助10
15秒前
16秒前
jlx发布了新的文献求助10
17秒前
faye完成签到,获得积分20
18秒前
Ben发布了新的文献求助10
19秒前
tangt糖糖完成签到,获得积分10
19秒前
Yiy完成签到 ,获得积分0
19秒前
yufeiji0626完成签到,获得积分10
20秒前
20秒前
20秒前
阿关发布了新的文献求助10
20秒前
22秒前
22秒前
yang应助阳光的凌雪采纳,获得50
23秒前
打打应助张浩毅采纳,获得10
24秒前
积极的音响完成签到,获得积分10
24秒前
yufeiji0626发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821