亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning-based method for the detection and segmentation of breast masses in ultrasound images

人工智能 乳腺超声检查 分割 深度学习 超声波 计算机视觉 计算机科学 放射科 医学 乳腺癌 乳腺摄影术 内科学 癌症
作者
Wanqing Li,Xianjun Ye,Xuemin Chen,Xianxian Jiang,Yidong Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad61b6
摘要

Automated detection and segmentation of breast masses in ultrasound images are critical for breast cancer diagnosis, but remain challenging due to limited image quality and complex breast tissues. This study aims to develop a deep learning-based method that enables accurate breast mass detection and segmentation in ultrasound images. Approach. A novel convolutional neural network-based framework that combines the You Only Look Once (YOLO) v5 network and the Global-Local (GOLO) strategy was developed. First, YOLOv5 was applied to locate the mass regions of interest (ROIs). Second, a Global Local-Connected Multi-Scale Selection (GOLO-CMSS) network was developed to segment the masses. The GOLO-CMSS operated on both the entire images globally and mass ROIs locally, and then integrated the two branches for a final segmentation output. Particularly, in global branch, CMSS applied Multi-Scale Selection (MSS) modules to automatically adjust the receptive fields, and Multi-Input (MLI) modules to enable fusion of shallow and deep features at different resolutions. The USTC dataset containing 28,477 breast ultrasound images was collected for training and test. The proposed method was also tested on three public datasets, UDIAT, BUSI and TUH. The segmentation performance of GOLO-CMSS was compared with others networks and three experienced radiologists. Main results. YOLOv5 outperformed other detection models with average precisions of 99.41%, 95.15%, 93.69% and 96.42% on the USTC, UDIAT, BUSI and TUH datasets, respectively. The proposed GOLO-CMSS showed superior segmentation performance over other state-of-the-art networks, with Dice similarity coefficients (DSCs) of 93.19%, 88.56%, 87.58% and 90.37% on the USTC, UDIAT, BUSI and TUH datasets, respectively. The mean DSC between GOLO-CMSS and each radiologist was significantly better than that between radiologists (p < 0.001). Significance. Our proposed method can accurately detect and segment breast masses with a decent performance comparable to radiologists, highlighting its great potential for clinical implementation in breast ultrasound examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccj发布了新的文献求助10
2秒前
mumu发布了新的文献求助20
6秒前
山止川行完成签到 ,获得积分10
7秒前
16秒前
Mrivy应助好好采纳,获得10
24秒前
8R60d8应助好好采纳,获得10
24秒前
LuckyJ_Jia应助好好采纳,获得10
24秒前
有魅力荧发布了新的文献求助60
31秒前
34秒前
炸鸡完成签到 ,获得积分10
37秒前
...发布了新的文献求助10
41秒前
开心幻悲完成签到 ,获得积分10
46秒前
欢喜橘子发布了新的文献求助10
50秒前
红油曲奇完成签到,获得积分10
56秒前
有魅力荧完成签到 ,获得积分10
1分钟前
1分钟前
...关闭了...文献求助
1分钟前
在水一方应助guanyu108采纳,获得10
1分钟前
牧无声发布了新的文献求助10
1分钟前
JamesPei应助合适的又夏采纳,获得10
1分钟前
Diligency完成签到 ,获得积分10
1分钟前
上官若男应助cc采纳,获得10
1分钟前
1分钟前
合适的又夏完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
牧无声发布了新的文献求助10
1分钟前
1分钟前
鹅鹅完成签到 ,获得积分10
1分钟前
微笑的砖头完成签到,获得积分10
1分钟前
高高代珊完成签到 ,获得积分10
1分钟前
自由可乐应助微笑的砖头采纳,获得80
1分钟前
YH2完成签到,获得积分10
1分钟前
兴尽晚回舟完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
牧无声发布了新的文献求助10
2分钟前
HAM关闭了HAM文献求助
2分钟前
宇文傲龙完成签到 ,获得积分10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241827
求助须知:如何正确求助?哪些是违规求助? 2886272
关于积分的说明 8242556
捐赠科研通 2554828
什么是DOI,文献DOI怎么找? 1382989
科研通“疑难数据库(出版商)”最低求助积分说明 649635
邀请新用户注册赠送积分活动 625382