A deep learning-based method for the detection and segmentation of breast masses in ultrasound images

人工智能 乳腺超声检查 分割 深度学习 超声波 计算机视觉 计算机科学 放射科 医学 乳腺癌 乳腺摄影术 内科学 癌症
作者
Wanqing Li,Xianjun Ye,Xuemin Chen,Xianxian Jiang,Yidong Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (15): 155027-155027
标识
DOI:10.1088/1361-6560/ad61b6
摘要

Abstract Objective. Automated detection and segmentation of breast masses in ultrasound images are critical for breast cancer diagnosis, but remain challenging due to limited image quality and complex breast tissues. This study aims to develop a deep learning-based method that enables accurate breast mass detection and segmentation in ultrasound images. Approach. A novel convolutional neural network-based framework that combines the You Only Look Once (YOLO) v5 network and the Global-Local (GOLO) strategy was developed. First, YOLOv5 was applied to locate the mass regions of interest (ROIs). Second, a Global Local-Connected Multi-Scale Selection (GOLO-CMSS) network was developed to segment the masses. The GOLO-CMSS operated on both the entire images globally and mass ROIs locally, and then integrated the two branches for a final segmentation output. Particularly, in global branch, CMSS applied Multi-Scale Selection (MSS) modules to automatically adjust the receptive fields, and Multi-Input (MLI) modules to enable fusion of shallow and deep features at different resolutions. The USTC dataset containing 28 477 breast ultrasound images was collected for training and test. The proposed method was also tested on three public datasets, UDIAT, BUSI and TUH. The segmentation performance of GOLO-CMSS was compared with other networks and three experienced radiologists. Main results. YOLOv5 outperformed other detection models with average precisions of 99.41%, 95.15%, 93.69% and 96.42% on the USTC, UDIAT, BUSI and TUH datasets, respectively. The proposed GOLO-CMSS showed superior segmentation performance over other state-of-the-art networks, with Dice similarity coefficients (DSCs) of 93.19%, 88.56%, 87.58% and 90.37% on the USTC, UDIAT, BUSI and TUH datasets, respectively. The mean DSC between GOLO-CMSS and each radiologist was significantly better than that between radiologists ( p < 0.001). Significance. Our proposed method can accurately detect and segment breast masses with a decent performance comparable to radiologists, highlighting its great potential for clinical implementation in breast ultrasound examination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niNe3YUE应助研友_Ljqal8采纳,获得10
刚刚
长情的海亦完成签到,获得积分10
2秒前
12发布了新的文献求助100
3秒前
4秒前
shiori完成签到,获得积分10
4秒前
隐形曼青应助Jodie采纳,获得10
6秒前
8秒前
郭6666发布了新的文献求助10
10秒前
FLyu完成签到,获得积分10
10秒前
耶椰发布了新的文献求助10
12秒前
12完成签到,获得积分10
12秒前
欣喜的元绿完成签到,获得积分10
17秒前
17秒前
19秒前
21秒前
25秒前
25秒前
huangqian发布了新的文献求助30
25秒前
郭6666完成签到,获得积分10
26秒前
可爱的函函应助lynn采纳,获得10
26秒前
27秒前
草莓能宝宝完成签到 ,获得积分10
28秒前
点凌蝶完成签到,获得积分10
30秒前
丘比特应助朴素的松采纳,获得10
32秒前
inter发布了新的文献求助10
32秒前
38秒前
38秒前
星辰大海应助Wqian采纳,获得10
41秒前
41秒前
45秒前
53秒前
54秒前
科目三应助朴素的松采纳,获得10
55秒前
Jodie发布了新的文献求助10
58秒前
58秒前
Heinrich完成签到,获得积分10
59秒前
Lucas应助inter采纳,获得10
1分钟前
无极微光应助科研通管家采纳,获得20
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
Verity应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550