激进的
电化学
化学
催化作用
产量(工程)
析氧
组合化学
氧气
原位
羟基自由基
氧化还原
纳米技术
光化学
生化工程
材料科学
有机化学
电极
物理化学
工程类
冶金
作者
Zhiming Wang,Nan Hu,Lan Wang,Hongying Zhao,Guohua Zhao
标识
DOI:10.1002/anie.202407628
摘要
The electro‐Fenton (EF) process is an advanced oxidation technology with significant potential; however, it is limited by two steps: generation and activation of H2O2. In contrast to the production of H2O2 via the electrochemical two‐electron oxygen reduction reaction (ORR), the electrochemical three‐electron (3e‐) ORR can directly activate molecular oxygen to yield the hydroxyl radical (·OH), thus breaking through the conceptual and operational limitations of the traditional EF reaction. Therefore, the 3e‐ ORR is a vital process for efficiently producing ·OH in situ, thus charting a new path toward the development of green water‐treatment technologies. This review summarizes the characteristics and mechanisms of the 3e‐ ORR, focusing on the basic principles and latest progress in the in situ generation and efficient utilization of ·OH through the modulation of the reaction pathway, shedding light on the rational design of 3e‐ ORR catalysts, mechanistic exploration, and practical applications for water treatment. Finally, the future developments and challenges of efficient, stable, and large‐scale utilization of ·OH are discussed based on achieving optimal 3e‐ ORR regulation and the potential to combine it with other technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI