A simple nomogram to predict dengue shock syndrome: A study of 4522 south east Asian children

登革热 医学 逻辑回归 列线图 儿科 红细胞压积 内科学 算法 病毒学 数学
作者
Phu Nguyen Trong Tran,Noppachai Siranart,Theerapon Sukmark,Umaporn Limothai,Sasipha Tachaboon,Terapong Tantawichien,Chule Thisyakorn,Usa Thisyakorn,Nattachai Srisawat
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:96 (8)
标识
DOI:10.1002/jmv.29874
摘要

Abstract Dengue shock syndrome (DSS) substantially worsens the prognosis of children with dengue infection. This study aimed to develop a simple clinical tool to predict the risk of DSS. A cohort of 2221 Thai children with a confirmed dengue infection who were admitted to King Chulalongkorn Memorial Hospital between 1987 and 2007 was conducted. Another data set from a previous publication comprising 2,301 Vietnamese children with dengue infection was employed to create a pooled data set, which was randomly split into training ( n = 3182), testing ( n = 697) and validating ( n = 643) datasets. Logistic regression was compared to alternative machine learning algorithms to derive the most predictive model for DSS. 4522 children, including 899 DSS cases (758 Thai and 143 Vietnamese children) with a mean age of 9.8 ± 3.4 years, were analyzed. Among the 12 candidate clinical parameters, the Bayesian Model Averaging algorithm retained the most predictive subset of five covariates, including body weight, history of vomiting, liver size, hematocrit levels, and platelet counts. At an Area Under the Curve (AUC) value of 0.85 (95% CI: 0.81–0.90) in testing data set, logistic regression outperformed random forest, XGBoost and support vector machine algorithms, with AUC values being 0.82 (0.77–0.88), 0.82 (0.76–0.88), and 0.848 (0.81–0.89), respectively. At its optimal threshold, this model had a sensitivity of 0.71 (0.62–0.80), a specificity of 0.84 (0.81–0.88), and an accuracy of 0.82 (0.78–0.85) on validating data set with consistent performance across subgroup analyses by age and gender. A logistic regression‐based nomogram was developed to facilitate the application of this model. This work introduces a simple and robust clinical model for DSS prediction that is well‐tailored for children in resource‐limited settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉势甘发布了新的文献求助10
1秒前
DQY发布了新的文献求助10
1秒前
DKL完成签到,获得积分10
1秒前
善学以致用应助宜城采纳,获得10
1秒前
小雨点完成签到,获得积分10
1秒前
cici关注了科研通微信公众号
2秒前
健壮凡桃完成签到,获得积分20
2秒前
嘤嘤怪完成签到,获得积分10
2秒前
3秒前
ypeng完成签到,获得积分10
3秒前
3秒前
iourcc完成签到,获得积分20
4秒前
秦磊发布了新的文献求助10
4秒前
yyq关注了科研通微信公众号
6秒前
6秒前
跳跃仙人掌应助健壮凡桃采纳,获得10
7秒前
poly哆啦A梦完成签到,获得积分10
7秒前
EMMA完成签到,获得积分20
8秒前
匹诺曹发布了新的文献求助10
9秒前
9秒前
10秒前
俭朴三问完成签到 ,获得积分10
10秒前
10秒前
过客发布了新的文献求助10
11秒前
11秒前
11秒前
shuya完成签到,获得积分10
12秒前
小二郎应助syx采纳,获得10
13秒前
我是老大应助呜啦啦啦采纳,获得10
14秒前
聪明的青寒完成签到 ,获得积分10
14秒前
Emma发布了新的文献求助10
14秒前
15秒前
15秒前
王大伟发布了新的文献求助10
16秒前
16秒前
研友_Zeg3VL完成签到,获得积分10
17秒前
17秒前
17秒前
科研通AI2S应助xiao采纳,获得10
17秒前
coldspringhao完成签到,获得积分10
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410794
求助须知:如何正确求助?哪些是违规求助? 3014348
关于积分的说明 8862922
捐赠科研通 2701746
什么是DOI,文献DOI怎么找? 1481239
科研通“疑难数据库(出版商)”最低求助积分说明 684750
邀请新用户注册赠送积分活动 679247