Association between obesity phenotypes and dietary patterns: A two-step cluster analysis based on the China multi-ethnic cohort study

医学 民族 肥胖 星团(航天器) 队列 中国 联想(心理学) 队列研究 表型 环境卫生 人口学 内科学 遗传学 基因 哲学 认识论 社会学 生物 人类学 计算机科学 政治学 法学 程序设计语言
作者
Yuxin Hu,Yuxin Zhang,Jianqin Zhong,Yuan Wang,Enhui Zhou,Feng Hong
出处
期刊:Preventive Medicine [Elsevier]
卷期号:187: 108100-108100
标识
DOI:10.1016/j.ypmed.2024.108100
摘要

This study aimed to explore obesity phenotypes and investigate their association with dietary patterns. Data were obtained from the baseline survey conducted in the China Multi-Ethnic Cohort Study from July 2018 to August 2019. All participants with a body mass index of at least 24 kg/m2 were enrolled and underwent a questionnaire survey, physical examination, and clinical laboratory tests. A two-step cluster analysis was employed to classify the participants into phenotypes. Dietary information was collected using the food frequency questionnaire, and principal component analysis was conducted to identify distinct dietary patterns. We analyzed the data of 8757 participants. They were categorized based on demographic characteristics, biochemical indicators, and anthropometric measurements into two distinct clusters identified as metabolically healthy obesity and metabolically unhealthy obesity (MUO). Key predictors included serum uric acid, sex, and diastolic blood pressure. Subgroup analysis by sex identified three distinct clusters within both male and female participants. The MUO group had the highest prevalence of a range of chronic noncommunicable diseases. The analysis uncovered three unique dietary patterns among participants classified as the premium protein, rice-oil-red meat, and oil-salt patterns. Notably, the MUO subgroup demonstrated significantly higher factor scores for both the rice-oil-red meat and oil-salt patterns. Obesity phenotypes are closely related to metabolic and demographic characteristics, with serum uric acid being a significant factor in categorizing the metabolic states of obesity. The rice-oil-red meat and oil-salt patterns may be related to the metabolic status of individuals with obesity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqh740发布了新的文献求助30
刚刚
1秒前
NexusExplorer应助pharmstudent采纳,获得10
2秒前
熊遇蜜完成签到,获得积分10
4秒前
panzer完成签到,获得积分10
5秒前
6秒前
lyt发布了新的文献求助10
7秒前
六月毕业关注了科研通微信公众号
8秒前
petrichor应助程程采纳,获得10
9秒前
圆儿完成签到 ,获得积分10
9秒前
潇洒的灵萱完成签到,获得积分10
9秒前
9秒前
9秒前
Toooo完成签到,获得积分10
10秒前
zqh740完成签到,获得积分10
10秒前
科研通AI5应助thchiang采纳,获得10
10秒前
lizzzzzz完成签到,获得积分10
11秒前
yyj发布了新的文献求助10
11秒前
请和我吃饭完成签到,获得积分10
12秒前
北城发布了新的文献求助10
13秒前
勤恳冰淇淋完成签到 ,获得积分10
14秒前
16秒前
16秒前
清晏完成签到,获得积分10
17秒前
曲书文完成签到,获得积分10
18秒前
李瑞瑞发布了新的文献求助10
18秒前
5123完成签到,获得积分10
18秒前
勤劳落雁发布了新的文献求助10
18秒前
18秒前
21秒前
xuxu完成签到 ,获得积分10
21秒前
22秒前
毛毛虫发布了新的文献求助10
22秒前
科研通AI5应助朴斓采纳,获得10
23秒前
陈彦冰完成签到,获得积分10
23秒前
tianny完成签到,获得积分10
24秒前
浪迹天涯发布了新的文献求助10
25秒前
星星发布了新的文献求助10
25秒前
李瑞瑞完成签到,获得积分10
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824