An integrated and rapid evaluation of Curcumae Radix from different botanical origins based on chemical components, antiplatelet aggregation effect and Fourier transform near-infrared spectroscopy

化学 偏最小二乘回归 化学计量学 近红外光谱 生物系统 支持向量机 根(腹足类) 人工智能 模式识别(心理学) 色谱法 机器学习 计算机科学 植物 物理 量子力学 生物
作者
Meng Wang,Tingting Hu,Yuhang Li,Rui Wang,Yudie Xu,Yabo Shi,Huangjin Tong,Mengting Yu,Yuwen Qin,Xi Mei,Lianlin Su,Chunqin Mao,Tulin Lu,Lin Li,De Ji,Chengxi Jiang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:324: 124992-124992
标识
DOI:10.1016/j.saa.2024.124992
摘要

Curcumae Radix (CR) is a widely used traditional Chinese medicine with significant pharmaceutical importance, including enhancing blood circulation and addressing blood stasis. This study aims to establish an integrated and rapid quality assessment method for CR from various botanical origins, based on chemical components, antiplatelet aggregation effects, and Fourier transform near-infrared (FT-NIR) spectroscopy combined with multivariate algorithms. Firstly, ultra-performance liquid chromatography-photodiode array (UPLC-PDA) combined with chemometric analyses was used to examine variations in the chemical profiles of CR. Secondly, the activation effect on blood circulation of CR was assessed using an in vitro antiplatelet aggregation assay. The studies revealed significant variations in chemical profiles and antiplatelet aggregation effects among CR samples from different botanical origins, with constituents such as germacrone, β-elemene, bisdemethoxycurcumin, demethoxycurcumin, and curcumin showing a positive correlation with antiplatelet aggregation biopotency. Thirdly, FT-NIR spectroscopy was integrated with various machine learning algorithms, including Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), Logistic Regression (LR), Support Vector Machine (SVM), and Subspace K-Nearest Neighbors (Subspace KNN), to classify CR samples from four distinct sources. The result showed that FT-NIR combined with KNN and SVM classification algorithms after SNV and MSC preprocessing successfully distinguished CR samples from four plant sources with an accuracy of 100%. Finally, Quantitative models for active constituents and antiplatelet aggregation bioactivity were developed by optimizing the partial least squares (PLS) model with interval combination optimization (ICO) and competitive adaptive reweighted sampling (CARS) techniques. The CARS-PLS model achieved the best predictive performance across all five components. The coefficient of determination (R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
史努比发布了新的文献求助10
2秒前
2秒前
九姑娘完成签到 ,获得积分10
3秒前
gentlescum完成签到,获得积分10
4秒前
wali发布了新的文献求助10
5秒前
xichang完成签到 ,获得积分10
6秒前
科研通AI2S应助罗帕霉素采纳,获得10
6秒前
爆米花应助Vaying采纳,获得10
6秒前
DDG发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
YIX发布了新的文献求助10
10秒前
凯凯完成签到 ,获得积分10
10秒前
罗帕霉素完成签到,获得积分10
13秒前
健壮的幻波完成签到,获得积分10
13秒前
酷酷绣发布了新的文献求助10
14秒前
15秒前
15秒前
YOMU完成签到,获得积分10
15秒前
nhzz2023完成签到 ,获得积分0
16秒前
1097完成签到,获得积分10
16秒前
16秒前
17秒前
JamesPei应助怡然的雪柳采纳,获得10
17秒前
健忘的汲发布了新的文献求助10
18秒前
酷波er应助靓丽的明辉采纳,获得10
19秒前
啦啦啦发布了新的文献求助10
21秒前
21秒前
科研通AI2S应助邾佳采纳,获得10
21秒前
22秒前
lulu发布了新的文献求助10
23秒前
GEeZiii完成签到,获得积分10
23秒前
妮妮完成签到,获得积分10
23秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138196
求助须知:如何正确求助?哪些是违规求助? 2789101
关于积分的说明 7790287
捐赠科研通 2445509
什么是DOI,文献DOI怎么找? 1300476
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046