Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study

医学 逻辑回归 败血症 机器学习 格拉斯哥昏迷指数 人工智能 接收机工作特性 支持向量机 曲线下面积 急诊医学 重症监护医学 内科学 计算机科学 外科 药代动力学
作者
Yiping Wang,Zhihong Gao,Yang Zhang,Zhongqiu Lu,Fangyuan Sun
出处
期刊:Internal and Emergency Medicine [Springer Nature]
标识
DOI:10.1007/s11739-024-03732-2
摘要

Sepsis triggers a harmful immune response due to infection, causing high mortality. Predicting sepsis outcomes early is vital. Despite machine learning's (ML) use in medical research, local validation within the Medical Information Mart for Intensive Care IV (MIMIC-IV) database is lacking. We aimed to devise a prognostic model, leveraging MIMIC-IV data, to predict sepsis mortality and validate it in a Chinese teaching hospital. MIMIC-IV provided patient data, split into training and internal validation sets. Four ML models logistic regression (LR), support vector machine (SVM), deep neural networks (DNN), and extreme gradient boosting (XGBoost) were employed. Shapley additive interpretation offered early and interpretable mortality predictions. Area under the ROC curve (AUROC) gaged predictive performance. Results were cross verified in a Chinese teaching hospital. The study included 27,134 sepsis patients from MIMIC-IV and 487 from China. After comparing, 52 clinical indicators were selected for ML model development. All models exhibited excellent discriminative ability. XGBoost surpassed others, with AUROC of 0.873 internally and 0.844 externally. XGBoost outperformed other ML models (LR: 0.829; SVM: 0.830; DNN: 0.837) and clinical scores (Simplified Acute Physiology Score II: 0.728; Sequential Organ Failure Assessment: 0.728; Oxford Acute Severity of Illness Score: 0.738; Glasgow Coma Scale: 0.691). XGBoost's hospital mortality prediction achieved AUROC 0.873, sensitivity 0.818, accuracy 0.777, specificity 0.768, and F1 score 0.551. We crafted an interpretable model for sepsis death risk prediction. ML algorithms surpassed traditional scores for sepsis mortality forecast. Validation in a Chinese teaching hospital echoed these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助雨的前世采纳,获得10
刚刚
boboking完成签到,获得积分10
1秒前
Battery-Li发布了新的文献求助10
1秒前
隐形如凡发布了新的文献求助10
2秒前
Lllllllll发布了新的文献求助10
3秒前
4秒前
4秒前
orixero应助summuryi采纳,获得10
4秒前
5秒前
5秒前
山石完成签到,获得积分20
7秒前
7秒前
8秒前
社会主义接班人完成签到 ,获得积分10
9秒前
fiammazeng发布了新的文献求助30
9秒前
zhangyuheng发布了新的文献求助10
10秒前
10秒前
mawanyu完成签到 ,获得积分10
11秒前
12秒前
明理依云完成签到,获得积分10
12秒前
13秒前
Lllllllll完成签到,获得积分10
13秒前
14秒前
14秒前
是木易呀应助yanning采纳,获得10
14秒前
积极听蓉完成签到,获得积分10
14秒前
eki发布了新的文献求助30
14秒前
ding应助健壮的囧采纳,获得10
14秒前
15秒前
summuryi发布了新的文献求助10
16秒前
Celine发布了新的文献求助10
16秒前
研友_VZG7GZ应助低空飞行采纳,获得10
16秒前
17秒前
17秒前
18秒前
wei68完成签到,获得积分10
18秒前
18秒前
zhangyuheng完成签到,获得积分10
19秒前
wei68发布了新的文献求助10
20秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297232
求助须知:如何正确求助?哪些是违规求助? 2932727
关于积分的说明 8458768
捐赠科研通 2605447
什么是DOI,文献DOI怎么找? 1422342
科研通“疑难数据库(出版商)”最低求助积分说明 661364
邀请新用户注册赠送积分活动 644655