Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study

医学 逻辑回归 败血症 机器学习 格拉斯哥昏迷指数 人工智能 接收机工作特性 支持向量机 曲线下面积 急诊医学 重症监护医学 内科学 计算机科学 外科 药代动力学
作者
Yiping Wang,Zhihong Gao,Yang Zhang,Zhongqiu Lu,Fangyuan Sun
出处
期刊:Internal and Emergency Medicine [Springer Science+Business Media]
标识
DOI:10.1007/s11739-024-03732-2
摘要

Sepsis triggers a harmful immune response due to infection, causing high mortality. Predicting sepsis outcomes early is vital. Despite machine learning's (ML) use in medical research, local validation within the Medical Information Mart for Intensive Care IV (MIMIC-IV) database is lacking. We aimed to devise a prognostic model, leveraging MIMIC-IV data, to predict sepsis mortality and validate it in a Chinese teaching hospital. MIMIC-IV provided patient data, split into training and internal validation sets. Four ML models logistic regression (LR), support vector machine (SVM), deep neural networks (DNN), and extreme gradient boosting (XGBoost) were employed. Shapley additive interpretation offered early and interpretable mortality predictions. Area under the ROC curve (AUROC) gaged predictive performance. Results were cross verified in a Chinese teaching hospital. The study included 27,134 sepsis patients from MIMIC-IV and 487 from China. After comparing, 52 clinical indicators were selected for ML model development. All models exhibited excellent discriminative ability. XGBoost surpassed others, with AUROC of 0.873 internally and 0.844 externally. XGBoost outperformed other ML models (LR: 0.829; SVM: 0.830; DNN: 0.837) and clinical scores (Simplified Acute Physiology Score II: 0.728; Sequential Organ Failure Assessment: 0.728; Oxford Acute Severity of Illness Score: 0.738; Glasgow Coma Scale: 0.691). XGBoost's hospital mortality prediction achieved AUROC 0.873, sensitivity 0.818, accuracy 0.777, specificity 0.768, and F1 score 0.551. We crafted an interpretable model for sepsis death risk prediction. ML algorithms surpassed traditional scores for sepsis mortality forecast. Validation in a Chinese teaching hospital echoed these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
大模型应助Ki_Ayasato采纳,获得10
3秒前
科研通AI2S应助嘞是举仔采纳,获得10
3秒前
4秒前
谨慎的晓蕾完成签到 ,获得积分10
4秒前
5秒前
呃呃完成签到,获得积分10
5秒前
Rabbit发布了新的文献求助10
6秒前
7秒前
DDEEE发布了新的文献求助10
8秒前
慕青应助大喵采纳,获得10
8秒前
丘比特应助Xian采纳,获得10
9秒前
公冶笑白发布了新的文献求助10
10秒前
11秒前
Ploaris发布了新的文献求助10
11秒前
研友_Z63kg8发布了新的文献求助20
12秒前
呃呃发布了新的文献求助10
12秒前
调皮的千万完成签到,获得积分10
12秒前
Fengliguantou发布了新的文献求助10
13秒前
hecheng0511完成签到,获得积分10
13秒前
J.发布了新的文献求助20
15秒前
ShenLi应助QDU采纳,获得10
17秒前
领导范儿应助小垃圾采纳,获得10
22秒前
研友_Z63kg8完成签到,获得积分10
22秒前
25秒前
静一静完成签到,获得积分10
25秒前
26秒前
26秒前
ycccccc完成签到 ,获得积分10
26秒前
李健应助huangyikun采纳,获得10
27秒前
27秒前
小药同学完成签到,获得积分10
28秒前
宝贝丫头发布了新的文献求助10
29秒前
白桦林泪发布了新的文献求助10
30秒前
小药同学发布了新的文献求助10
30秒前
31秒前
嘞是举仔发布了新的文献求助10
31秒前
感性发布了新的文献求助10
32秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190