亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study

医学 逻辑回归 败血症 机器学习 格拉斯哥昏迷指数 人工智能 接收机工作特性 支持向量机 曲线下面积 急诊医学 重症监护医学 内科学 计算机科学 外科 药代动力学
作者
Yiping Wang,Zhihong Gao,Yang Zhang,Zhongqiu Lu,Fangyuan Sun
出处
期刊:Internal and Emergency Medicine [Springer Science+Business Media]
被引量:7
标识
DOI:10.1007/s11739-024-03732-2
摘要

Sepsis triggers a harmful immune response due to infection, causing high mortality. Predicting sepsis outcomes early is vital. Despite machine learning's (ML) use in medical research, local validation within the Medical Information Mart for Intensive Care IV (MIMIC-IV) database is lacking. We aimed to devise a prognostic model, leveraging MIMIC-IV data, to predict sepsis mortality and validate it in a Chinese teaching hospital. MIMIC-IV provided patient data, split into training and internal validation sets. Four ML models logistic regression (LR), support vector machine (SVM), deep neural networks (DNN), and extreme gradient boosting (XGBoost) were employed. Shapley additive interpretation offered early and interpretable mortality predictions. Area under the ROC curve (AUROC) gaged predictive performance. Results were cross verified in a Chinese teaching hospital. The study included 27,134 sepsis patients from MIMIC-IV and 487 from China. After comparing, 52 clinical indicators were selected for ML model development. All models exhibited excellent discriminative ability. XGBoost surpassed others, with AUROC of 0.873 internally and 0.844 externally. XGBoost outperformed other ML models (LR: 0.829; SVM: 0.830; DNN: 0.837) and clinical scores (Simplified Acute Physiology Score II: 0.728; Sequential Organ Failure Assessment: 0.728; Oxford Acute Severity of Illness Score: 0.738; Glasgow Coma Scale: 0.691). XGBoost's hospital mortality prediction achieved AUROC 0.873, sensitivity 0.818, accuracy 0.777, specificity 0.768, and F1 score 0.551. We crafted an interpretable model for sepsis death risk prediction. ML algorithms surpassed traditional scores for sepsis mortality forecast. Validation in a Chinese teaching hospital echoed these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vincey完成签到,获得积分10
2秒前
12秒前
jj发布了新的文献求助30
18秒前
柳代云发布了新的文献求助10
28秒前
sjj完成签到,获得积分10
39秒前
52秒前
Criminology34应助科研通管家采纳,获得10
55秒前
浮游应助科研通管家采纳,获得10
55秒前
59秒前
bkagyin应助lezbj99采纳,获得10
1分钟前
紧张的以山完成签到,获得积分10
1分钟前
Akim应助lezbj99采纳,获得10
1分钟前
anqi6688完成签到,获得积分10
1分钟前
HUSH完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助anqi6688采纳,获得10
1分钟前
111完成签到 ,获得积分10
2分钟前
科目三应助GPTea采纳,获得10
2分钟前
Augustines完成签到,获得积分10
2分钟前
冷静新烟完成签到,获得积分20
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
Magali应助科研通管家采纳,获得30
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得30
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
清脆的飞丹完成签到,获得积分10
3分钟前
冷静新烟发布了新的文献求助10
3分钟前
Krsky完成签到,获得积分10
3分钟前
浮游应助GPTea采纳,获得10
3分钟前
HUSH发布了新的文献求助20
3分钟前
Hugrainbow完成签到,获得积分10
3分钟前
maher完成签到 ,获得积分10
3分钟前
酷波er应助GPTea采纳,获得10
3分钟前
五四三二一完成签到 ,获得积分10
4分钟前
4分钟前
DPH完成签到 ,获得积分10
4分钟前
冷静新烟发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116357
求助须知:如何正确求助?哪些是违规求助? 4323015
关于积分的说明 13469810
捐赠科研通 4155310
什么是DOI,文献DOI怎么找? 2277113
邀请新用户注册赠送积分活动 1278970
关于科研通互助平台的介绍 1217011