Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study

医学 逻辑回归 败血症 机器学习 格拉斯哥昏迷指数 人工智能 接收机工作特性 支持向量机 曲线下面积 急诊医学 重症监护医学 内科学 计算机科学 外科 药代动力学
作者
Yiping Wang,Zhihong Gao,Yang Zhang,Zhongqiu Lu,Fangyuan Sun
出处
期刊:Internal and Emergency Medicine [Springer Nature]
被引量:7
标识
DOI:10.1007/s11739-024-03732-2
摘要

Sepsis triggers a harmful immune response due to infection, causing high mortality. Predicting sepsis outcomes early is vital. Despite machine learning's (ML) use in medical research, local validation within the Medical Information Mart for Intensive Care IV (MIMIC-IV) database is lacking. We aimed to devise a prognostic model, leveraging MIMIC-IV data, to predict sepsis mortality and validate it in a Chinese teaching hospital. MIMIC-IV provided patient data, split into training and internal validation sets. Four ML models logistic regression (LR), support vector machine (SVM), deep neural networks (DNN), and extreme gradient boosting (XGBoost) were employed. Shapley additive interpretation offered early and interpretable mortality predictions. Area under the ROC curve (AUROC) gaged predictive performance. Results were cross verified in a Chinese teaching hospital. The study included 27,134 sepsis patients from MIMIC-IV and 487 from China. After comparing, 52 clinical indicators were selected for ML model development. All models exhibited excellent discriminative ability. XGBoost surpassed others, with AUROC of 0.873 internally and 0.844 externally. XGBoost outperformed other ML models (LR: 0.829; SVM: 0.830; DNN: 0.837) and clinical scores (Simplified Acute Physiology Score II: 0.728; Sequential Organ Failure Assessment: 0.728; Oxford Acute Severity of Illness Score: 0.738; Glasgow Coma Scale: 0.691). XGBoost's hospital mortality prediction achieved AUROC 0.873, sensitivity 0.818, accuracy 0.777, specificity 0.768, and F1 score 0.551. We crafted an interpretable model for sepsis death risk prediction. ML algorithms surpassed traditional scores for sepsis mortality forecast. Validation in a Chinese teaching hospital echoed these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
jewel9发布了新的文献求助10
2秒前
南桥发布了新的文献求助10
3秒前
嘞是举仔应助无辜从阳采纳,获得30
3秒前
不明完成签到 ,获得积分10
4秒前
凡凡发布了新的文献求助10
4秒前
5秒前
小白完成签到,获得积分10
5秒前
7秒前
元谷雪发布了新的文献求助10
8秒前
香蕉觅云应助77采纳,获得10
9秒前
赘婿应助阿正嗖啪采纳,获得10
9秒前
9秒前
慕青应助28551采纳,获得10
10秒前
CipherSage应助俏皮的吐司采纳,获得10
10秒前
11秒前
力劈华山完成签到,获得积分10
11秒前
科研通AI6应助fzzf采纳,获得10
12秒前
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
南桥完成签到,获得积分10
13秒前
别说话发布了新的文献求助10
13秒前
小白不白完成签到,获得积分10
14秒前
14秒前
美满的涔发布了新的文献求助10
14秒前
搜集达人应助尉迟十八采纳,获得60
14秒前
赘婿应助聪慧烤鸡采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
hearz发布了新的文献求助20
16秒前
LiXQ发布了新的文献求助10
17秒前
愚人发布了新的文献求助10
17秒前
yangtong发布了新的文献求助10
17秒前
19秒前
latadawang发布了新的文献求助30
20秒前
21秒前
22秒前
23秒前
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360