Automated Quantification of HER2 Amplification Levels Using Deep Learning

计算机科学 人工智能 深度学习
作者
Ching‐Wei Wang,Kai-Lin Chu,Ting-Sheng Su,K. Liu,Yi‐Jia Lin,Tai‐Kuang Chao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3476554
摘要

HER2 assessment is necessary for patient selection in anti-HER2 targeted treatment. However, manual assessment of HER2 amplification is time-costly, labor-intensive, highly subjective and error-prone. Challenges in HER2 analysis in fluorescence in situ hybridization (FISH) and dual in situ hybridization (DISH) images include unclear and blurry cell boundaries, large variations in cell shapes and signals, overlapping and clustered cells and sparse label issues with manual annotations only on cells with high confidences, producing subjective assessment scores according to the individual choices on cell selection. To address the above-mentioned issues, we have developed a soft-sampling cascade deep learning model and a signal detection model in quantifying CEN17 and HER2 of cells to assist assessment of HER2 amplification status for patient selection of HER2 targeting therapy to breast cancer. In evaluation with two different kinds of clinical datasets, including a FISH data set and a DISH data set, the proposed method achieves high accuracy, recall and F1-score for both datasets in instance segmentation of HER2 related cells that must contain both CEN17 and HER2 signals. Moreover, the proposed method is demonstrated to significantly outperform seven state of the art recently published deep learning methods, including contour proposal network (CPN), soft label-based FCN (SL-FCN), modified fully convolutional network (M-FCN), bilayer convolutional network (BCNet), SOLOv2, Cascade R-CNN and DeepLabv3+ with three different backbones (p ≤ 0.01). Clinically, anti-HER2 therapy can also be applied to gastric cancer patients. We applied the developed model to assist in HER2 DISH amplification assessment for gastric cancer patients, and it also showed promising predictive results (accuracy 97.67 ±1.46%, precision 96.15 ±5.82%, respectively).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
shdfio发布了新的文献求助10
1秒前
2秒前
xiaohu发布了新的文献求助10
2秒前
汉堡包应助lllttt采纳,获得10
3秒前
求你做我的狗完成签到,获得积分20
4秒前
欣慰外套完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
挑片岛屿发布了新的文献求助200
5秒前
6秒前
我先睡了完成签到,获得积分10
6秒前
hvivi6发布了新的文献求助10
7秒前
摸摸桑发布了新的文献求助10
7秒前
8秒前
wanci应助Trends采纳,获得10
8秒前
现代书雪完成签到,获得积分10
8秒前
xiaohu完成签到,获得积分10
9秒前
xing完成签到,获得积分10
9秒前
11秒前
Random发布了新的文献求助10
11秒前
缥缈的平露完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
YGYANG发布了新的文献求助10
14秒前
斯文败类应助abcd_1067采纳,获得10
16秒前
EvilS完成签到,获得积分10
16秒前
JINWEIJIANG发布了新的文献求助10
17秒前
Chambray发布了新的文献求助10
18秒前
bkagyin应助无解采纳,获得10
19秒前
囡囝囿团完成签到,获得积分10
21秒前
April完成签到,获得积分10
21秒前
22秒前
喜悦剑身发布了新的文献求助10
22秒前
YGYANG完成签到,获得积分10
23秒前
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432