Automated Quantification of HER2 Amplification Levels Using Deep Learning

计算机科学 人工智能 深度学习
作者
Ching‐Wei Wang,Kai-Lin Chu,Ting-Sheng Su,K. Liu,Yi‐Jia Lin,Tai‐Kuang Chao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3476554
摘要

HER2 assessment is necessary for patient selection in anti-HER2 targeted treatment. However, manual assessment of HER2 amplification is time-costly, labor-intensive, highly subjective and error-prone. Challenges in HER2 analysis in fluorescence in situ hybridization (FISH) and dual in situ hybridization (DISH) images include unclear and blurry cell boundaries, large variations in cell shapes and signals, overlapping and clustered cells and sparse label issues with manual annotations only on cells with high confidences, producing subjective assessment scores according to the individual choices on cell selection. To address the above-mentioned issues, we have developed a soft-sampling cascade deep learning model and a signal detection model in quantifying CEN17 and HER2 of cells to assist assessment of HER2 amplification status for patient selection of HER2 targeting therapy to breast cancer. In evaluation with two different kinds of clinical datasets, including a FISH data set and a DISH data set, the proposed method achieves high accuracy, recall and F1-score for both datasets in instance segmentation of HER2 related cells that must contain both CEN17 and HER2 signals. Moreover, the proposed method is demonstrated to significantly outperform seven state of the art recently published deep learning methods, including contour proposal network (CPN), soft label-based FCN (SL-FCN), modified fully convolutional network (M-FCN), bilayer convolutional network (BCNet), SOLOv2, Cascade R-CNN and DeepLabv3+ with three different backbones (p ≤ 0.01). Clinically, anti-HER2 therapy can also be applied to gastric cancer patients. We applied the developed model to assist in HER2 DISH amplification assessment for gastric cancer patients, and it also showed promising predictive results (accuracy 97.67 ±1.46%, precision 96.15 ±5.82%, respectively).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BYN完成签到 ,获得积分10
1秒前
1秒前
2秒前
陈陈完成签到,获得积分10
2秒前
细心无声完成签到 ,获得积分10
3秒前
Singularity应助找文献呢采纳,获得10
3秒前
3秒前
从容芮应助复杂的如萱采纳,获得10
3秒前
苹果小蜜蜂完成签到,获得积分10
4秒前
honghong应助惬意的晚风采纳,获得10
4秒前
桐桐应助WW采纳,获得10
4秒前
kai完成签到 ,获得积分10
5秒前
小宋完成签到,获得积分10
5秒前
Michstabe发布了新的文献求助10
6秒前
研友_8K2QJZ发布了新的文献求助10
7秒前
明亮的智宸完成签到,获得积分10
9秒前
Twilight应助爱学习的YY采纳,获得20
9秒前
9秒前
kkk完成签到,获得积分20
10秒前
curtisness应助郑麻采纳,获得10
12秒前
虚心醉蝶发布了新的文献求助10
13秒前
14秒前
慕青应助刘晓宇采纳,获得10
14秒前
斯文败类应助欢喜白开水采纳,获得30
14秒前
Michstabe完成签到,获得积分10
15秒前
dan1029完成签到,获得积分10
18秒前
占问柳发布了新的文献求助10
18秒前
爱静静应助qmhx采纳,获得10
19秒前
典雅天玉完成签到,获得积分20
20秒前
felicity完成签到 ,获得积分10
20秒前
20秒前
暴躁的小懒猪完成签到,获得积分10
20秒前
尊敬的半梅完成签到,获得积分10
20秒前
兴奋一鸣发布了新的文献求助20
21秒前
23秒前
铁树完成签到,获得积分10
23秒前
zz完成签到,获得积分10
25秒前
天天快乐应助ritayanyan88采纳,获得10
25秒前
研友_8K2QJZ发布了新的文献求助10
25秒前
严俊东发布了新的文献求助10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137211
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785274
捐赠科研通 2444247
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601023