Automated Quantification of HER2 Amplification Levels Using Deep Learning

计算机科学 人工智能 深度学习
作者
Ching‐Wei Wang,Kai-Lin Chu,Ting-Sheng Su,K. Liu,Yi‐Jia Lin,Tai‐Kuang Chao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3476554
摘要

HER2 assessment is necessary for patient selection in anti-HER2 targeted treatment. However, manual assessment of HER2 amplification is time-costly, labor-intensive, highly subjective and error-prone. Challenges in HER2 analysis in fluorescence in situ hybridization (FISH) and dual in situ hybridization (DISH) images include unclear and blurry cell boundaries, large variations in cell shapes and signals, overlapping and clustered cells and sparse label issues with manual annotations only on cells with high confidences, producing subjective assessment scores according to the individual choices on cell selection. To address the above-mentioned issues, we have developed a soft-sampling cascade deep learning model and a signal detection model in quantifying CEN17 and HER2 of cells to assist assessment of HER2 amplification status for patient selection of HER2 targeting therapy to breast cancer. In evaluation with two different kinds of clinical datasets, including a FISH data set and a DISH data set, the proposed method achieves high accuracy, recall and F1-score for both datasets in instance segmentation of HER2 related cells that must contain both CEN17 and HER2 signals. Moreover, the proposed method is demonstrated to significantly outperform seven state of the art recently published deep learning methods, including contour proposal network (CPN), soft label-based FCN (SL-FCN), modified fully convolutional network (M-FCN), bilayer convolutional network (BCNet), SOLOv2, Cascade R-CNN and DeepLabv3+ with three different backbones (p ≤ 0.01). Clinically, anti-HER2 therapy can also be applied to gastric cancer patients. We applied the developed model to assist in HER2 DISH amplification assessment for gastric cancer patients, and it also showed promising predictive results (accuracy 97.67 ±1.46%, precision 96.15 ±5.82%, respectively).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_LMNjkn发布了新的文献求助10
1秒前
ding应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
yizhiGao应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
pinging应助科研通管家采纳,获得10
2秒前
唠叨的月光完成签到,获得积分10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
清爽老九应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得20
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
清爽老九应助科研通管家采纳,获得20
2秒前
英姑应助科研通管家采纳,获得30
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
优雅苑睐完成签到,获得积分10
3秒前
善学以致用应助CD采纳,获得10
3秒前
无花果应助孙奕采纳,获得10
4秒前
4秒前
HYH发布了新的文献求助20
4秒前
Rinohalt发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
领导范儿应助通~采纳,获得10
6秒前
6秒前
fufufu123发布了新的文献求助10
6秒前
英姑应助猪猪hero采纳,获得10
6秒前
励志小薛发布了新的文献求助10
7秒前
怕孤独的从雪完成签到,获得积分20
7秒前
7秒前
joyce完成签到,获得积分10
7秒前
8秒前
xiaotian_fan发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794