Large-Scale Construction and Analysis of Amorphous Porous Polymer Network Materials

无定形固体 材料科学 背景(考古学) 纳米技术 多孔性 聚合物 原子单位 比例(比率) 计算机科学 物理 化学 有机化学 量子力学 复合材料 古生物学 生物
作者
Junkil Park,Wonseok Lee,Jihan Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (42): 57190-57199
标识
DOI:10.1021/acsami.4c13221
摘要

In recent decades, data-driven methodologies have emerged as irreplaceable tools in materials science, particularly for elucidating structure–property relationships and facilitating the discovery of novel materials. However, despite the rapid development witnessed in other domains, amorphous materials have received relatively less attention in this context. The disordered atomic structure of amorphous materials resulting from irreversible reactions between building blocks has posed a difficulty in structural modeling, leading to a lack of databases that accurately reflect the amorphous nature of these materials. In this work, a database composed of 10,237 porous polymer networks (PPNs) was constructed from self-assembly simulations, resulting in the largest database of PPNs considering their amorphous characteristics. Through the distinct differences observed in comparison with existing databases, we emphasize that carefully considering the structural disorder of PPNs is essential for accurately characterizing their chemical behaviors. Machine learning models trained on the constructed database have confirmed that the macroscopic properties of amorphous PPNs can be predicted solely from the atomic structures of their monomers, implying that the characteristics of previously unseen PPNs can be assessed without the need for additional self-assembly simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花样年华完成签到,获得积分0
刚刚
刚刚
学术小白完成签到 ,获得积分10
1秒前
Lcccccc完成签到,获得积分10
1秒前
大意的诗珊完成签到,获得积分20
1秒前
2秒前
周舟发布了新的文献求助30
2秒前
3秒前
震动的又槐完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
666999发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
8秒前
溴氧铋发布了新的文献求助10
8秒前
汉堡包应助qyy采纳,获得10
8秒前
SciGPT应助草莓甜甜圈采纳,获得10
9秒前
carpybala发布了新的文献求助10
9秒前
9秒前
w17638619025发布了新的文献求助10
9秒前
溴氧铋发布了新的文献求助10
9秒前
溴氧铋发布了新的文献求助10
9秒前
溴氧铋发布了新的文献求助10
9秒前
溴氧铋发布了新的文献求助10
9秒前
溴氧铋发布了新的文献求助10
9秒前
溴氧铋发布了新的文献求助10
9秒前
溴氧铋发布了新的文献求助10
9秒前
溴氧铋发布了新的文献求助10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469785
求助须知:如何正确求助?哪些是违规求助? 3062985
关于积分的说明 9080938
捐赠科研通 2753206
什么是DOI,文献DOI怎么找? 1510815
邀请新用户注册赠送积分活动 698061
科研通“疑难数据库(出版商)”最低求助积分说明 698018