Deep Learning‐Based Precipitation Simulation for Tropical Cyclones, Mesoscale Convective Systems, and Atmospheric Rivers in East Asia

中尺度气象学 热带气旋 降水 气候学 中尺度对流系统 东亚 对流 环境科学 深对流 气象学 大气科学 地理 地质学 中国 考古
作者
Lujia Zhang,Yang Zhao,Yiting Cen,Mengqian Lu
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (20)
标识
DOI:10.1029/2024jd041914
摘要

Abstract Different types of weather events, including tropical cyclones (TCs), mesoscale convective systems (MCSs), and atmospheric rivers (ARs), significantly impact precipitation patterns in East Asia. This study pioneers the application of deep learning (DL) methods, including convolutional neural network, U‐Net, and Attention U‐Net models, to simulate precipitation associated with these weather events. The spatial permutation method is also used to identify key meteorological variables for accurately generating precipitation in DL models. The DL models trained on all timeslots consistently surpass the performance of state‐of‐the‐art numerical simulations, although their efficacy slightly diminishes during extreme weather events. This outperformance is attributed to the appropriate emphasis on key variables that capture precipitation processes, such as low‐level moisture and mid‐level pressure fields. However, new DL models trained separately for TCs, MCSs, and ARs using clipped precipitation as the output does not exceed the performance of the previous DL models. Among all input features, moisture variables contribute the most to precipitation at low intensity, while the importance of other variables increases for more intense precipitation, although some discrepancies vary across models and event types. The spatial results further reveal the detailed locations of variables that are essential for accurately simulating precipitation related to weather events, such as areas of high specific humidity and strong winds. DL models could also acquire useful information from region remote to the events to improve the simulation. Overall, DL models serve as promising tools for simulating and enhancing our understanding of precipitation patterns associated with various weather events in East Asia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就含玉发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
JaneChen完成签到 ,获得积分10
1秒前
李健应助涵泽采纳,获得10
1秒前
TIAMO发布了新的文献求助10
2秒前
2秒前
2秒前
Pendulium发布了新的文献求助10
2秒前
yi学生完成签到,获得积分10
3秒前
3秒前
大模型应助叶子采纳,获得10
3秒前
4秒前
儒雅的猪八蛋完成签到,获得积分10
4秒前
SciGPT应助Hey采纳,获得10
4秒前
5秒前
summer完成签到,获得积分20
5秒前
忧虑的乘云完成签到,获得积分20
6秒前
6秒前
syy完成签到,获得积分10
6秒前
6秒前
我是老大应助Wink14551采纳,获得10
7秒前
烟花应助Snoopy采纳,获得10
7秒前
7秒前
jhih发布了新的文献求助10
7秒前
任性映秋完成签到,获得积分10
7秒前
xx发布了新的文献求助10
8秒前
8秒前
9秒前
852应助星河采纳,获得10
9秒前
嘿嘿发布了新的文献求助10
9秒前
华仔应助姜姜采纳,获得30
9秒前
hh完成签到,获得积分10
9秒前
syy发布了新的文献求助10
9秒前
10秒前
姜姜完成签到,获得积分10
11秒前
wu发布了新的文献求助30
11秒前
11秒前
Hello应助温暖小霸王采纳,获得10
13秒前
13秒前
欢呼采枫完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593712
求助须知:如何正确求助?哪些是违规求助? 4679550
关于积分的说明 14810466
捐赠科研通 4644670
什么是DOI,文献DOI怎么找? 2534601
邀请新用户注册赠送积分活动 1502645
关于科研通互助平台的介绍 1469366