Deep Learning‐Based Precipitation Simulation for Tropical Cyclones, Mesoscale Convective Systems, and Atmospheric Rivers in East Asia

中尺度气象学 热带气旋 降水 气候学 中尺度对流系统 东亚 对流 环境科学 深对流 气象学 大气科学 地理 地质学 中国 考古
作者
Lujia Zhang,Yang Zhao,Yiting Cen,Mengqian Lu
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (20)
标识
DOI:10.1029/2024jd041914
摘要

Abstract Different types of weather events, including tropical cyclones (TCs), mesoscale convective systems (MCSs), and atmospheric rivers (ARs), significantly impact precipitation patterns in East Asia. This study pioneers the application of deep learning (DL) methods, including convolutional neural network, U‐Net, and Attention U‐Net models, to simulate precipitation associated with these weather events. The spatial permutation method is also used to identify key meteorological variables for accurately generating precipitation in DL models. The DL models trained on all timeslots consistently surpass the performance of state‐of‐the‐art numerical simulations, although their efficacy slightly diminishes during extreme weather events. This outperformance is attributed to the appropriate emphasis on key variables that capture precipitation processes, such as low‐level moisture and mid‐level pressure fields. However, new DL models trained separately for TCs, MCSs, and ARs using clipped precipitation as the output does not exceed the performance of the previous DL models. Among all input features, moisture variables contribute the most to precipitation at low intensity, while the importance of other variables increases for more intense precipitation, although some discrepancies vary across models and event types. The spatial results further reveal the detailed locations of variables that are essential for accurately simulating precipitation related to weather events, such as areas of high specific humidity and strong winds. DL models could also acquire useful information from region remote to the events to improve the simulation. Overall, DL models serve as promising tools for simulating and enhancing our understanding of precipitation patterns associated with various weather events in East Asia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力发布了新的文献求助10
4秒前
姜露萍发布了新的文献求助10
4秒前
111222关注了科研通微信公众号
5秒前
7秒前
8秒前
8秒前
wssamuel完成签到 ,获得积分10
9秒前
天天快乐应助陈曦采纳,获得10
9秒前
10秒前
暮暮发布了新的文献求助10
13秒前
海比天蓝发布了新的文献求助10
13秒前
Hello应助lzx采纳,获得10
13秒前
17秒前
车灵波完成签到,获得积分10
18秒前
像只猫发布了新的文献求助10
18秒前
19秒前
20秒前
一裤子灰发布了新的文献求助10
21秒前
21秒前
hyw完成签到,获得积分10
22秒前
22秒前
23秒前
HotnessK完成签到,获得积分10
24秒前
wlei发布了新的文献求助10
24秒前
biubiudididi发布了新的文献求助10
24秒前
24秒前
25秒前
27秒前
29秒前
FSF完成签到,获得积分10
29秒前
30秒前
30秒前
31秒前
竹子完成签到,获得积分10
31秒前
顾矜应助风趣依瑶采纳,获得10
31秒前
灵溪发布了新的文献求助10
32秒前
小二郎应助一裤子灰采纳,获得10
33秒前
斯文念波发布了新的文献求助10
33秒前
丰富新儿完成签到,获得积分10
34秒前
扭扭车完成签到,获得积分20
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176