Deep Learning‐Based Precipitation Simulation for Tropical Cyclones, Mesoscale Convective Systems, and Atmospheric Rivers in East Asia

中尺度气象学 热带气旋 降水 气候学 中尺度对流系统 东亚 对流 环境科学 深对流 气象学 大气科学 地理 地质学 中国 考古
作者
Lujia Zhang,Yang Zhao,Yiting Cen,Mengqian Lu
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (20)
标识
DOI:10.1029/2024jd041914
摘要

Abstract Different types of weather events, including tropical cyclones (TCs), mesoscale convective systems (MCSs), and atmospheric rivers (ARs), significantly impact precipitation patterns in East Asia. This study pioneers the application of deep learning (DL) methods, including convolutional neural network, U‐Net, and Attention U‐Net models, to simulate precipitation associated with these weather events. The spatial permutation method is also used to identify key meteorological variables for accurately generating precipitation in DL models. The DL models trained on all timeslots consistently surpass the performance of state‐of‐the‐art numerical simulations, although their efficacy slightly diminishes during extreme weather events. This outperformance is attributed to the appropriate emphasis on key variables that capture precipitation processes, such as low‐level moisture and mid‐level pressure fields. However, new DL models trained separately for TCs, MCSs, and ARs using clipped precipitation as the output does not exceed the performance of the previous DL models. Among all input features, moisture variables contribute the most to precipitation at low intensity, while the importance of other variables increases for more intense precipitation, although some discrepancies vary across models and event types. The spatial results further reveal the detailed locations of variables that are essential for accurately simulating precipitation related to weather events, such as areas of high specific humidity and strong winds. DL models could also acquire useful information from region remote to the events to improve the simulation. Overall, DL models serve as promising tools for simulating and enhancing our understanding of precipitation patterns associated with various weather events in East Asia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大个应助迷人灰狼采纳,获得10
1秒前
TTT发布了新的文献求助10
1秒前
清秀的大山完成签到,获得积分10
1秒前
清枫完成签到,获得积分10
2秒前
2秒前
FashionBoy应助智商洼地采纳,获得10
2秒前
田様应助谷策采纳,获得10
3秒前
张zz发布了新的文献求助10
4秒前
jzt12138发布了新的文献求助10
5秒前
流氓煎蛋发布了新的文献求助10
5秒前
清枫发布了新的文献求助10
5秒前
newbiology完成签到 ,获得积分10
5秒前
6秒前
研友_V8RQEZ完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
橘子发布了新的文献求助10
10秒前
已知中的未知完成签到 ,获得积分10
10秒前
10秒前
温柔的吐司完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
14秒前
14秒前
慕青应助JL采纳,获得50
15秒前
xixixi发布了新的文献求助10
15秒前
奋斗碧灵完成签到,获得积分10
15秒前
15秒前
迷人灰狼发布了新的文献求助10
15秒前
15秒前
bin发布了新的文献求助10
15秒前
16秒前
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636