Machine learning model base on metabolomics and proteomics to predict cognitive impairment in Parkinson’s disease

帕金森病 疾病 医学 认知障碍 代谢组学 认知 蛋白质组学 神经科学 心理学 生物信息学 内科学 生物 生物化学 基因
作者
Baiyuan Yang,Yongyun Zhu,Kelu Li,Fang Wang,Bin Liu,Qian Zhou,Yuchao Tai,Zhaochao Liu,Lin Yang,Ruiqiong Ba,Chunyan Lei,Hui Ren,Meng Xu,Ailan Pang,Xinglong Yang
出处
期刊:npj Parkinson's disease 卷期号:10 (1)
标识
DOI:10.1038/s41531-024-00795-y
摘要

There is an urgent need to identify predictive biomarkers of Parkinson's disease (PD) with cognitive impairment (PDCI) in order to individualize patient management, ensure timely intervention, and improve prognosis. The aim of this study was to screen for these biomarkers by comparing the plasma proteome and metabolome of PD patients with or without cognitive impairment. Proteomics and metabolomics analyses were performed on a discover cohort. A machine learning model was used to identify candidate protein and metabolite biomarkers of PDCI, which were validated in an independent cohort. The predictive ability of these biomarkers for PDCI was evaluated by plotting receiver operating characteristic curves and calculating the area under the curve (AUC). Moreover, we assessed the predictive ability of these proteins in combination with neuroimaging. In the discover cohort (n = 100), we identified 25 protein features with best results in the machine learning model, including top-ranked PSAP and H3C15. The two-proteins were used for model construction, achieving an Area under the curve (AUC) of 0.951 in the train set and AUC of 0.981 in the test set. Similarly, the model gives a rank list of endogenous metabolite features, Glycocholic Acid and 6-Methylnicotinamide were two top features. Combining these two markers further got the AUC of 0.969 in train set and 0.867 in the test set. To validate the performance of the protein biomarkers, we performed targeted analysis of selected proteins (H3C15 and PSAP) and proteins likely associated with PDCI (NCAM2 and LAMB2) using parallel reaction monitoring in validation cohort (n = 116). The AUC of the classifier built with H3C15 and PSAP is 0.813. Moreover, when combining H3C15, PSAP, NCAM2, and LAMB2, the model achieved AUC of 0.983 in the train set, AUC of 0.981 in the test set, and AUC of 0.839 in the validation set. Furthermore, we verified that these protein markers we discovered can improve the predictive effect of neuroimaging on PDCI: the classifier built with neuroimaging features had AUC of 0.833, which improved to 0.905 when combined with H3C15. Taken together, our integrated proteomics and metabolomics analysis successfully identified potential biomarkers for PDCI. Additionally, H3C15 showed promise in enhancing the predictive performance of neuroimaging for cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼鼠标发布了新的文献求助10
刚刚
lcc关闭了lcc文献求助
1秒前
张zhang发布了新的文献求助10
1秒前
michal发布了新的文献求助10
2秒前
6秒前
不二发布了新的文献求助10
6秒前
善学以致用应助亓大大采纳,获得10
7秒前
今后应助苏博儿采纳,获得10
7秒前
8秒前
8秒前
8秒前
jiao发布了新的文献求助10
8秒前
汪汪大王完成签到 ,获得积分10
9秒前
liyali发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
Flynn发布了新的文献求助10
13秒前
cyhcyh发布了新的文献求助10
14秒前
勤奋弋应助bella采纳,获得10
15秒前
Elon发布了新的文献求助10
15秒前
16秒前
16秒前
CipherSage应助小吴采纳,获得10
18秒前
acc完成签到,获得积分10
19秒前
丁鹏笑完成签到 ,获得积分0
19秒前
19秒前
共享精神应助端庄秋柳采纳,获得30
21秒前
21秒前
22秒前
欢呼鼠标完成签到,获得积分10
22秒前
亓大大发布了新的文献求助10
22秒前
开心初雪完成签到,获得积分10
23秒前
张莹完成签到 ,获得积分10
23秒前
小马甲应助健康快乐采纳,获得10
23秒前
25秒前
小马甲应助沐阳d采纳,获得10
25秒前
一杯茶发布了新的文献求助30
25秒前
cyhcyh完成签到,获得积分20
27秒前
27秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170102
求助须知:如何正确求助?哪些是违规求助? 2821407
关于积分的说明 7933784
捐赠科研通 2481608
什么是DOI,文献DOI怎么找? 1321916
科研通“疑难数据库(出版商)”最低求助积分说明 633434
版权声明 602579