Machine learning model base on metabolomics and proteomics to predict cognitive impairment in Parkinson’s disease

帕金森病 疾病 医学 认知障碍 代谢组学 认知 蛋白质组学 神经科学 心理学 生物信息学 内科学 生物 生物化学 基因
作者
Baiyuan Yang,Yongyun Zhu,Kelu Li,Fang Wang,Bin Liu,Qian Zhou,Yuchao Tai,Zhaochao Liu,Lin Yang,Ruiqiong Ba,Chunyan Lei,Hui Ren,Meng Xu,Ailan Pang,Xinglong Yang
出处
期刊:npj Parkinson's disease 卷期号:10 (1)
标识
DOI:10.1038/s41531-024-00795-y
摘要

There is an urgent need to identify predictive biomarkers of Parkinson's disease (PD) with cognitive impairment (PDCI) in order to individualize patient management, ensure timely intervention, and improve prognosis. The aim of this study was to screen for these biomarkers by comparing the plasma proteome and metabolome of PD patients with or without cognitive impairment. Proteomics and metabolomics analyses were performed on a discover cohort. A machine learning model was used to identify candidate protein and metabolite biomarkers of PDCI, which were validated in an independent cohort. The predictive ability of these biomarkers for PDCI was evaluated by plotting receiver operating characteristic curves and calculating the area under the curve (AUC). Moreover, we assessed the predictive ability of these proteins in combination with neuroimaging. In the discover cohort (n = 100), we identified 25 protein features with best results in the machine learning model, including top-ranked PSAP and H3C15. The two-proteins were used for model construction, achieving an Area under the curve (AUC) of 0.951 in the train set and AUC of 0.981 in the test set. Similarly, the model gives a rank list of endogenous metabolite features, Glycocholic Acid and 6-Methylnicotinamide were two top features. Combining these two markers further got the AUC of 0.969 in train set and 0.867 in the test set. To validate the performance of the protein biomarkers, we performed targeted analysis of selected proteins (H3C15 and PSAP) and proteins likely associated with PDCI (NCAM2 and LAMB2) using parallel reaction monitoring in validation cohort (n = 116). The AUC of the classifier built with H3C15 and PSAP is 0.813. Moreover, when combining H3C15, PSAP, NCAM2, and LAMB2, the model achieved AUC of 0.983 in the train set, AUC of 0.981 in the test set, and AUC of 0.839 in the validation set. Furthermore, we verified that these protein markers we discovered can improve the predictive effect of neuroimaging on PDCI: the classifier built with neuroimaging features had AUC of 0.833, which improved to 0.905 when combined with H3C15. Taken together, our integrated proteomics and metabolomics analysis successfully identified potential biomarkers for PDCI. Additionally, H3C15 showed promise in enhancing the predictive performance of neuroimaging for cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李健应助咩呀mie采纳,获得30
2秒前
Cleo应助doud采纳,获得10
3秒前
Ava应助潘少东采纳,获得10
3秒前
4秒前
4秒前
张再禹发布了新的文献求助10
4秒前
周周完成签到,获得积分10
5秒前
共享精神应助张天雨采纳,获得10
5秒前
天天下雨完成签到 ,获得积分10
6秒前
科研通AI5应助蜡笔小欣采纳,获得10
6秒前
6秒前
顾亦舟完成签到 ,获得积分10
6秒前
6秒前
6秒前
思源应助清脆如之采纳,获得10
7秒前
在水一方应助wjw采纳,获得10
7秒前
7秒前
青塘龙仔发布了新的文献求助10
7秒前
yyds发布了新的文献求助10
7秒前
7秒前
8秒前
猫一盒发布了新的文献求助10
8秒前
拼搏太英完成签到,获得积分10
8秒前
情怀应助独特百褶裙采纳,获得20
9秒前
9秒前
聿1988发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
研究牲发布了新的文献求助10
11秒前
11秒前
小爱同学发布了新的文献求助10
12秒前
12秒前
小文子完成签到,获得积分10
12秒前
12秒前
科研小裴发布了新的文献求助10
12秒前
机智的鲸鱼完成签到,获得积分20
13秒前
孟一完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193943
求助须知:如何正确求助?哪些是违规求助? 4376306
关于积分的说明 13629155
捐赠科研通 4231222
什么是DOI,文献DOI怎么找? 2320866
邀请新用户注册赠送积分活动 1319114
关于科研通互助平台的介绍 1269445