Machine learning model base on metabolomics and proteomics to predict cognitive impairment in Parkinson’s disease

帕金森病 疾病 医学 认知障碍 代谢组学 认知 蛋白质组学 神经科学 心理学 生物信息学 内科学 生物 生物化学 基因
作者
Baiyuan Yang,Yongyun Zhu,Kelu Li,Fang Wang,Bin Liu,Qian Zhou,Yuchao Tai,Zhaochao Liu,Lin Yang,Ruiqiong Ba,Chunyan Lei,Hui Ren,Meng Xu,Ailan Pang,Xinglong Yang
出处
期刊:npj Parkinson's disease 卷期号:10 (1)
标识
DOI:10.1038/s41531-024-00795-y
摘要

There is an urgent need to identify predictive biomarkers of Parkinson's disease (PD) with cognitive impairment (PDCI) in order to individualize patient management, ensure timely intervention, and improve prognosis. The aim of this study was to screen for these biomarkers by comparing the plasma proteome and metabolome of PD patients with or without cognitive impairment. Proteomics and metabolomics analyses were performed on a discover cohort. A machine learning model was used to identify candidate protein and metabolite biomarkers of PDCI, which were validated in an independent cohort. The predictive ability of these biomarkers for PDCI was evaluated by plotting receiver operating characteristic curves and calculating the area under the curve (AUC). Moreover, we assessed the predictive ability of these proteins in combination with neuroimaging. In the discover cohort (n = 100), we identified 25 protein features with best results in the machine learning model, including top-ranked PSAP and H3C15. The two-proteins were used for model construction, achieving an Area under the curve (AUC) of 0.951 in the train set and AUC of 0.981 in the test set. Similarly, the model gives a rank list of endogenous metabolite features, Glycocholic Acid and 6-Methylnicotinamide were two top features. Combining these two markers further got the AUC of 0.969 in train set and 0.867 in the test set. To validate the performance of the protein biomarkers, we performed targeted analysis of selected proteins (H3C15 and PSAP) and proteins likely associated with PDCI (NCAM2 and LAMB2) using parallel reaction monitoring in validation cohort (n = 116). The AUC of the classifier built with H3C15 and PSAP is 0.813. Moreover, when combining H3C15, PSAP, NCAM2, and LAMB2, the model achieved AUC of 0.983 in the train set, AUC of 0.981 in the test set, and AUC of 0.839 in the validation set. Furthermore, we verified that these protein markers we discovered can improve the predictive effect of neuroimaging on PDCI: the classifier built with neuroimaging features had AUC of 0.833, which improved to 0.905 when combined with H3C15. Taken together, our integrated proteomics and metabolomics analysis successfully identified potential biomarkers for PDCI. Additionally, H3C15 showed promise in enhancing the predictive performance of neuroimaging for cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害怕的又晴完成签到,获得积分10
1秒前
行毅文完成签到,获得积分10
1秒前
1秒前
李健的小迷弟应助Guo5082采纳,获得10
2秒前
FashionBoy应助小马过河采纳,获得10
2秒前
小可爱发布了新的文献求助10
3秒前
iNk应助liujinjin采纳,获得10
3秒前
xyqy完成签到,获得积分10
4秒前
5秒前
5秒前
lijianguo发布了新的文献求助10
5秒前
6秒前
miaoww发布了新的文献求助10
6秒前
yxb完成签到,获得积分10
7秒前
无算浮白完成签到,获得积分10
8秒前
Mark完成签到,获得积分10
8秒前
9秒前
9秒前
hang完成签到,获得积分10
9秒前
10秒前
10秒前
mmmz完成签到,获得积分10
10秒前
cai白白发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
阿哲完成签到,获得积分10
11秒前
虚幻梦寒完成签到,获得积分10
12秒前
隐形曼青应助xyqy采纳,获得10
12秒前
lilysmile001完成签到,获得积分10
12秒前
chaobada完成签到,获得积分10
12秒前
我唉科研完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
SimonShaw完成签到,获得积分10
15秒前
15秒前
曾泳钧完成签到,获得积分10
16秒前
wjh发布了新的文献求助10
16秒前
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
《模拟电子技术基础:系统方法》 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011633
求助须知:如何正确求助?哪些是违规求助? 3551418
关于积分的说明 11308628
捐赠科研通 3285620
什么是DOI,文献DOI怎么找? 1811122
邀请新用户注册赠送积分活动 886781
科研通“疑难数据库(出版商)”最低求助积分说明 811653