Machine learning model base on metabolomics and proteomics to predict cognitive impairment in Parkinson’s disease

帕金森病 疾病 医学 认知障碍 代谢组学 认知 蛋白质组学 神经科学 心理学 生物信息学 内科学 生物 生物化学 基因
作者
Baiyuan Yang,Yongyun Zhu,Kelu Li,Fang Wang,Bin Liu,Qian Zhou,Yuchao Tai,Zhaochao Liu,Lin Yang,Ruiqiong Ba,Chunyan Lei,Hui Ren,Zhong Xu,Ailan Pang,Xinglong Yang
出处
期刊:npj Parkinson's disease 卷期号:10 (1): 187-187 被引量:3
标识
DOI:10.1038/s41531-024-00795-y
摘要

There is an urgent need to identify predictive biomarkers of Parkinson's disease (PD) with cognitive impairment (PDCI) in order to individualize patient management, ensure timely intervention, and improve prognosis. The aim of this study was to screen for these biomarkers by comparing the plasma proteome and metabolome of PD patients with or without cognitive impairment. Proteomics and metabolomics analyses were performed on a discover cohort. A machine learning model was used to identify candidate protein and metabolite biomarkers of PDCI, which were validated in an independent cohort. The predictive ability of these biomarkers for PDCI was evaluated by plotting receiver operating characteristic curves and calculating the area under the curve (AUC). Moreover, we assessed the predictive ability of these proteins in combination with neuroimaging. In the discover cohort (n = 100), we identified 25 protein features with best results in the machine learning model, including top-ranked PSAP and H3C15. The two-proteins were used for model construction, achieving an Area under the curve (AUC) of 0.951 in the train set and AUC of 0.981 in the test set. Similarly, the model gives a rank list of endogenous metabolite features, Glycocholic Acid and 6-Methylnicotinamide were two top features. Combining these two markers further got the AUC of 0.969 in train set and 0.867 in the test set. To validate the performance of the protein biomarkers, we performed targeted analysis of selected proteins (H3C15 and PSAP) and proteins likely associated with PDCI (NCAM2 and LAMB2) using parallel reaction monitoring in validation cohort (n = 116). The AUC of the classifier built with H3C15 and PSAP is 0.813. Moreover, when combining H3C15, PSAP, NCAM2, and LAMB2, the model achieved AUC of 0.983 in the train set, AUC of 0.981 in the test set, and AUC of 0.839 in the validation set. Furthermore, we verified that these protein markers we discovered can improve the predictive effect of neuroimaging on PDCI: the classifier built with neuroimaging features had AUC of 0.833, which improved to 0.905 when combined with H3C15. Taken together, our integrated proteomics and metabolomics analysis successfully identified potential biomarkers for PDCI. Additionally, H3C15 showed promise in enhancing the predictive performance of neuroimaging for cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遇晴完成签到,获得积分10
6秒前
淡然冬灵应助舒心的雍采纳,获得10
6秒前
爱撒娇的大开完成签到 ,获得积分10
8秒前
neu_zxy1991完成签到,获得积分10
8秒前
完美世界应助默默采纳,获得10
9秒前
fei菲飞完成签到,获得积分10
10秒前
鹿呦完成签到 ,获得积分10
12秒前
从容的尔云完成签到 ,获得积分10
13秒前
hml123完成签到,获得积分10
15秒前
hanlixuan完成签到 ,获得积分10
16秒前
keleboys完成签到 ,获得积分10
16秒前
xinqisusu完成签到 ,获得积分10
18秒前
昔昔完成签到 ,获得积分10
21秒前
LRR完成签到 ,获得积分10
26秒前
davis264完成签到,获得积分10
26秒前
26秒前
huahua完成签到 ,获得积分10
29秒前
make217完成签到 ,获得积分10
31秒前
biopig完成签到,获得积分0
33秒前
sxc完成签到 ,获得积分10
35秒前
Wtony完成签到 ,获得积分10
35秒前
波里舞完成签到 ,获得积分10
36秒前
内向苡完成签到,获得积分10
36秒前
爱马仕完成签到,获得积分10
38秒前
42秒前
哈哈完成签到 ,获得积分10
43秒前
fearlessji完成签到 ,获得积分10
45秒前
默默发布了新的文献求助10
46秒前
tingalan应助科研通管家采纳,获得10
47秒前
搜集达人应助科研通管家采纳,获得10
47秒前
李爱国应助daguan采纳,获得10
51秒前
小草完成签到 ,获得积分10
55秒前
CandyJump完成签到,获得积分10
56秒前
巨大的小侠完成签到 ,获得积分10
58秒前
Mint完成签到 ,获得积分10
1分钟前
鱼儿游啊游完成签到,获得积分10
1分钟前
飞快的雁完成签到 ,获得积分10
1分钟前
67完成签到,获得积分10
1分钟前
杰小瑞完成签到,获得积分10
1分钟前
HY完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866712
求助须知:如何正确求助?哪些是违规求助? 6426461
关于积分的说明 15654910
捐赠科研通 4981701
什么是DOI,文献DOI怎么找? 2686725
邀请新用户注册赠送积分活动 1629535
关于科研通互助平台的介绍 1587532