亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning model base on metabolomics and proteomics to predict cognitive impairment in Parkinson’s disease

帕金森病 疾病 医学 认知障碍 代谢组学 认知 蛋白质组学 神经科学 心理学 生物信息学 内科学 生物 生物化学 基因
作者
Baiyuan Yang,Yongyun Zhu,Kelu Li,Fang Wang,Bin Liu,Qian Zhou,Yuchao Tai,Zhaochao Liu,Lin Yang,Ruiqiong Ba,Chunyan Lei,Hui Ren,Meng Xu,Ailan Pang,Xinglong Yang
出处
期刊:npj Parkinson's disease 卷期号:10 (1)
标识
DOI:10.1038/s41531-024-00795-y
摘要

There is an urgent need to identify predictive biomarkers of Parkinson's disease (PD) with cognitive impairment (PDCI) in order to individualize patient management, ensure timely intervention, and improve prognosis. The aim of this study was to screen for these biomarkers by comparing the plasma proteome and metabolome of PD patients with or without cognitive impairment. Proteomics and metabolomics analyses were performed on a discover cohort. A machine learning model was used to identify candidate protein and metabolite biomarkers of PDCI, which were validated in an independent cohort. The predictive ability of these biomarkers for PDCI was evaluated by plotting receiver operating characteristic curves and calculating the area under the curve (AUC). Moreover, we assessed the predictive ability of these proteins in combination with neuroimaging. In the discover cohort (n = 100), we identified 25 protein features with best results in the machine learning model, including top-ranked PSAP and H3C15. The two-proteins were used for model construction, achieving an Area under the curve (AUC) of 0.951 in the train set and AUC of 0.981 in the test set. Similarly, the model gives a rank list of endogenous metabolite features, Glycocholic Acid and 6-Methylnicotinamide were two top features. Combining these two markers further got the AUC of 0.969 in train set and 0.867 in the test set. To validate the performance of the protein biomarkers, we performed targeted analysis of selected proteins (H3C15 and PSAP) and proteins likely associated with PDCI (NCAM2 and LAMB2) using parallel reaction monitoring in validation cohort (n = 116). The AUC of the classifier built with H3C15 and PSAP is 0.813. Moreover, when combining H3C15, PSAP, NCAM2, and LAMB2, the model achieved AUC of 0.983 in the train set, AUC of 0.981 in the test set, and AUC of 0.839 in the validation set. Furthermore, we verified that these protein markers we discovered can improve the predictive effect of neuroimaging on PDCI: the classifier built with neuroimaging features had AUC of 0.833, which improved to 0.905 when combined with H3C15. Taken together, our integrated proteomics and metabolomics analysis successfully identified potential biomarkers for PDCI. Additionally, H3C15 showed promise in enhancing the predictive performance of neuroimaging for cognitive impairment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
fransiccarey完成签到,获得积分10
6秒前
斯文败类应助xwc采纳,获得10
9秒前
小黑超努力完成签到 ,获得积分10
11秒前
Criminology34应助Krstal采纳,获得10
12秒前
短短急个球完成签到,获得积分10
13秒前
14秒前
15秒前
18秒前
sa完成签到 ,获得积分10
23秒前
Krstal给Krstal的求助进行了留言
23秒前
24秒前
Nan语发布了新的文献求助10
26秒前
香蕉觅云应助linsen采纳,获得10
27秒前
南宫硕完成签到 ,获得积分10
27秒前
xwc发布了新的文献求助10
29秒前
晚星完成签到 ,获得积分10
31秒前
32秒前
35秒前
35秒前
明理的惜蕊完成签到,获得积分10
36秒前
NexusExplorer应助科研通管家采纳,获得10
38秒前
shhoing应助科研通管家采纳,获得10
38秒前
shhoing应助科研通管家采纳,获得10
38秒前
ztayx完成签到 ,获得积分10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
vetboy发布了新的文献求助10
39秒前
tzj发布了新的文献求助30
41秒前
如意艳血完成签到 ,获得积分10
46秒前
47秒前
47秒前
xwc完成签到,获得积分10
48秒前
陶陶子发布了新的文献求助10
52秒前
55秒前
59秒前
1分钟前
xiha西希完成签到,获得积分10
1分钟前
1分钟前
tzj完成签到,获得积分10
1分钟前
快乐咸鱼完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543024
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610916
捐赠科研通 4570411
什么是DOI,文献DOI怎么找? 2505751
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454364